
●

●

●

●

●

●

●

●

Room

Download the full App Created in this Guide:
https://drive.google.com/file/d/1tVbM7C7kIt0rw3FcmelwZ1GON2GxJiGR/view?
usp=sharing

Let’s say we need to persist the data that added by the user. So we want a
persistence library like Room. It is an Object-Mapping library that provides an
abstraction layer over SQLite that doesn’t try to hide SQLite but rather embrace
it.

There are some reasons why we use room for data persistence:
It’s based on SQLite so we can write SQL queries. Don’t forget that
Android supports SQLite as a proven technology from the day one.
With Room we can have observability, because it can return LiveData
objects and does the object mapping for you.
Room creates the database schema using your entity definitions and
does the sql operations like insert, update and delete using annotation
processing, resulting in lesser boilerplate code.
Room speaks SQL. So it knows whether you made a typo or did
something wrong in queries at compile time.
You can create abstract suspended functions and let room create all
the logic for you.

Other SQLite Android libraries:
1. Sugar ORM – This is an object relational mapper that wrap SQLite database.
It map sqlite table to a java plain object.
2. Realm Database – It provides offline-first functionality & data persistence
through an easy-to-use API.
3. SQLBrite – A lightweight wrapper around SQLiteOpenHelper which
introduces reactive stream semantics to SQL operations

Primary components
There are three major components in Room:

Data entities that represent tables in your app's database.
Data access objects (DAOs) that provide methods that your app can
use to query, update, insert, and delete data in the database.
The database class that holds the database and serves as the main
access point for the underlying connection to your app's persisted
data.

First Step - Add the latest room library
Visit this page and import the room library to your app Gradle project file:

 def room_version = "2.4.2"

 implementation "androidx.room:room-runtime:$room_version"
 kapt "androidx.room:room-compiler:$room_version"

Important Note:
In the app Gradle Add the plugin :
id 'kotlin-kapt'

Please note we replaced the room annotationProcessor to kapt - Kapt is the
Kotlin Annotation Processing Tool. If you want to be able to reference
generated code from Kotlin, you need to use kapt.

Second Step - Define your Entities
Use the @Entity annotation to define a new entity - this you will do for the
basic Kotlin or Java class you want to save in your database - you can
optionally give the table a name using (tableNmae = “[table name]”) the default
table name is the class name.
Define your primary key using @PrimaryKey next to the property. That will serve
as your primary key. If you don’t have a unique key to your objects like emails
you can set it to be auto generated use (autoGenerate = true) next to it.

If you want a different column name in the data base from the property name
use @ColumnInfo(name = [“Your name”])

It’s recommended you always use the @ColumnInfo annotation as it gives you
more flexibility to rename the members without having to change the database
column names. Changing the column names leads to a change in the database
schema and therefore you need to implement a migration or specific
instructions not to implement migration.

For example:

Third step - define you Dao classes

Dao classes will allow you to abstract the database communication in a more
logical layer which will be much easier to mock in tests (compared to running
direct sql queries). It also automatically does the conversion from Cursor to
your application classes so you don't need to deal with lower level database
APIs for most of your data access.

Room also verifies all of your queries in Dao classes while the application is
being compiled so that if there is a problem in one of the queries, you will be
notified instantly while you are writing it.

The class marked with @Dao should either be an interface or an abstract class.
At compile time, Room will generate an implementation of this class when it is
referenced by a Database.
An abstract @Dao class can optionally have a constructor that takes a
Database as its only parameter.
It is recommended to have multiple Dao classes in your codebase depending
on the tables they interact.

●

●

●

●

●

●

onConflict annotation parameter signifies what to do if a conflict happens on
insertion. It can take the following values:

OnConflictStrategy.REPLACE : To replace the old data and continue
the transaction.
OnConflictStrategy.ABORT : To abort the transaction. The
transaction is rolled back.
OnConflictStrategy.NONE : To ignore the conflict.

Third step - create you database
Now create the AppDatabase class to hold the database. AppDatabase defines
the database configuration and serves as the app's main access point to the
persisted data. The database class must satisfy the following conditions:

The class must be annotated with a @Database annotation that
includes an entities array that lists all of the data entities associated
with the database.
The class must be an abstract class that extends RoomDatabase.
For each DAO class that is associated with the database, the database
class must define an abstract method that has zero arguments and
returns an instance of the DAO class.

In order to make sure we don’t have multiple database instances open at the
same time we define a RoomDatabase instance in the companion object of our
class. We need the application context to initialized the database. So the best
way to handle this is to and a getDatabase function that receives the context

and builds the database.

We’ll define an abstract method that returns the ItemsDao. Everything is
abstract because Room is the one that generates the implementation for us.

exportSchema
You can set annotation processor argument to tell Room to export the schema
into a folder. Even though it is not mandatory, it is a good practice to have
version history in your codebase and you should commit that file into your
version control system (but don't ship it with your app!).
So if you don't need to check the schema and you want to get rid of the
warning, just add exportSchema = false to your RoomDatabase

@Volatile - Volatile means, it will not be stored in the local cache. Meaning:
writes to this field are immediately made visible to other threads.

Forth step(optional)
create your helper class the gives a single access point to your database
You can think of repository as the single access point for getting the data. The

class will include all the functions from which we can get all the data.

Please note that while the fetching that return LiveData is done on a
background thread automatically, adding the item is done on the application
main thread! until we use coroutines you can use this but be sure to add
the .allowMainThreadQueries() to your ROOM database builder. If you don’t do
this the app will crash and you will get an error message “Cannot access
database on the main”.

Later we will solve this by adding Coroutines to out project.

Fifth step
Update your view model
Here we need to extend the Android ViewModel because we need the
application instance to give to our database

And That’s it you have integrated ROOM. Go ahead and check your
implementation by creating the full project

Let’s add our ItemViewModel
In our case we want to share one ViewModel for the whole activity because it
makes sense. We have three Fragments all need to access the same
information: one shows the list, one adds an item to it and one shows a single
item from the list. The ViewModel will hold all the items as a LiveData property
and the chosen item also as LiveData, it will have functions to add an item,
delete an item, delete all items and set the chosen item. Please note that we
will inherit from the AndroidViewModel because we need the Context in order
to create the repository private instance who will serve as a single access point
for our data.
Our final View Model will look like this (please note that while the chosen item
must be a mutable live data we only expose it as Live Data in order to keep our
data persistent):

Note that we also added a delete all function to the repository and to the Dao:

Now let’s go back the the UI - To all fragment get the view Model bounded to
the activity scope and because all of them lives in the same activity there will
be one instance of it that will be shared by all of them. So add this line to the
top of each fragment:

Go to the AllItemsFragment In the onViewCreated get the viewModel’s items
LiveData and observe it. In the callback which is called with the updated list of
items pass it to the adapter and implement the callback functions (remove the
code with the ItemManager and replace it with this):

Before finishing the AllItemsFragment go ahead to your adapter and add a
function that will return an Item according to the position, because in the
fragment upon swiping we get the position but we need to pass an Item to the
viewModel delete function. So we will add a function to get an item according
to its position(in ItemAdapter):

Now on the onSwipe of the ItemTouchHelper use this function:

In the AddItemFragment remove the ItemManger access and replace it with
the viewModel call (remember you added it as a property before):

And in the DetailItemFragment after the view had been created observe your
chosen item live data and update your UI (what was previously located in the
arguments let scope):

Adding a Menu
In order to add an action/option menu to the top of the AllItemsFragment we
create the following xml file under the resource menu folder:

This menu item contains an id, a vector asset we added before (just right click
on the res folder choose new and then choose vector asset, in the new window
choose a trash bin from the clipart and click finish), and a showAsAction
attribute set to always means it will be shown all the rime on the menu and not
under the thee dots (try giving different values).

In the AllItemsFragment where the menu is shown override these two functions:

The first one will be called by the system when its time to create the option
menu and we will use the given menu inflater to inflate our own xml menu file
we just dud to the empty menu the os gives us.
The second function is called upon pressing the action menu items and after
presenting a confirmation dialog we will use our viewModel deleteAll function.

Please note that in order for the fragment to show the Manu you must add this
line in the onCreateView of the AllItemsFragment function:

this is only needed when presenting the menu in a fragment and not in the
activity - if we would have presented the menu in the activity it would have
existed throughout all go the fragments and we don’t want that.

And that’s it the project is finished run and test your app.

Please note that we still allow queries too run on the application
main thread:

Try to remove this line and test your app.
Please note the the getItems works just fine because it returns LiveData and
LiveData by default is doing all of its work on the Dispatchers.IO group of
threads which are background thread ads and not on the main thread but try to
add an item and see what happens… YES the app crashed and ion the logical
you can’t find the following message:

And that’s why we need to study Coroutines (Come back to this
tutorial afterwards).

Lets improve our background work(After the co-routine chapter):

The first solution is for repository to implement CoroutineScope and override
CoroutineContext to operate in IO Thread.

Now you can remove the allowMainThreadQueries() from your database
instance initialization and go ahead and run your app and try adding an item…
No crash!
Try deleting and it carshare s again, so do the same for the delete functions
they are not returning LiveData:

The problem with this solution is that it is not subject to the principle of
structured concurrency meaning there is no actual scope confined to any
lifecycle for these coroutines. So although it works we can make it better.

The best option is use the ROOM coroutine KTX extensions and our view
model scope.

Room nows comes with coroutine support. DAO methods can now be marked
as suspended to ensure that they are not executed on the main thread.
We can make the Dao addItem() function to be suspended and then Room will
generate the code using coroutines by himself but we must call it from another
suspended function or a coroutine context so we will use the viewModel scope
to execute it.

Just add the following dependency to your app grade file:
implementation("androidx.room:room-ktx:$room_version")

And make the DAO insert, update and delete functions suspended:

Thats it under the hood ROOM automatically replaces this auto implemented
synchronous code:

With this:

The generated code ensures that the insert happens off of the UI thread. In our
suspend function implementation, the same logic from the synchronous insert
method is wrapped in a `Callable`. Room calls the `CoroutinesRoom.execute`
suspend function, which switches to a background dispatcher, depending on
whether the database is opened and we are in a transaction or not. If we check
the CoroutinesRoom.execute() implementation, we see that Room moves
callable.call() to a different CoroutineContext. This is derived from the
executors you provide when building your database or by default will use the
Architecture Components IO Executor.

So the actual changes in our code is making the Dao functions suspended and
because it is called from the repository functions we should make them also
suspended and execute it from the viewModelScope:

viewModelScope is a Kotlin extension property on the ViewModel class. It is a
CoroutineScope that is cancelled once the ViewModel is destroyed (when
onCleared() is called). Thus when you’re using a ViewModel, you can start all of
your coroutines using this scope.

Please note that @Transaction methods can also be suspended and they can
call other suspended DAO functions:

Room offers allot of functionality and flexibility than what we’ve covered — you
can define how Room should handle database conflicts, you can store types
that otherwise, natively with SQLite can’t be stored, like Date, by creating
TypeConverters, you can implement complex queries, using JOIN and other
SQL functionality, create database views, pre-populate your database or trigger
certain database actions whenever the database is created or opened.

For more reading please refer to
https://developer.android.com/training/data-storage/room

