
Kotlin Basics

Download IntelliJ IDEA from here (if the link is invalid just type “IntelliJ
download” in google):
https://www.jetbrains.com/idea/download/
(Choose Community)

We will use Android Studio Kotlin REPL (Read Evaluate Print-loop) [tools ->
Kotlin -> REPL]
Problem with opening REPL Run > Edit Configurations... > Templates > Java
Scratch > Shorten command line to @argfile (Java 9+) and restart Android
Studio.

var - variables
val - finals
val always preferred

No need for semicolon
Kotlin is type inferred and type safety
Meaning this won’t work:
var x = 7
 x = 7.4

Kotlin has no primitives only objects (Int, Float, String)

consts are compile time constants. Meaning that their value has to be assigned
during compile time, unlike vals, where it can be done at runtime. This means,
that consts can never be assigned to a function or any class constructor, and
only to a String or primitive.

const val WEBSITE_NAME = "Baeldung"
the Kotlin compiler inlines the const val values into the locations where
they’re used

If you try to type it in the REPL you will get the following error: “const 'val' are
only allowed on top level or in objects”, like this for example:

const val VALUE: String = "constant"

fun main() {
 println("$VALUE is inlined")
}

At first glance, we might think that the Kotlin compiler gets a static field value
from a class and then concatenates it with the ” is inlined” text. However,
since const vals are inlined, the compiler will copy the “constant” literal
wherever the VALUE constant is used. This is why they must get a value in
compile time. This constant inlining is much more efficient than getting a
static value from a class.

Kotlin Nullability
In an effort to rid the world of NullPointerException, regular variable types in
Kotlin don't allow the assignment of null. If you need a variable that can be null,
declare it as nullable by adding ? at the end of its type - String?, Int?.

In Kotlin, the type system distinguishes between references that can hold null
(nullable references) and those that can not (non-null references). Regular
objects cannot be null (String, Int…) - prevent null pointer exception

The main advantage is that If we check a property of null objects we get a
compile time and not runtime error
To bypass the compile time check use !! - but be careful from
KotlinNullPointerException

If we are not sure we use - safe call - use ?. - str?.length - > will return null and
not crash

When inferring types, the compiler assumes non-null for variables that are
initialized with a value.
var inferredNonNull = "The compiler assumes non-null"
If we assign null on initialization the ? Type will be auto inferred

class Nothing - Nothing has no instances. You can use Nothing to represent "a
value that never exists": for example, if a function has the return type of
Nothing, it means that it never returns (always throws an exception).

There are a few techniques for using or accessing the nullable variable. One of
them is safe call ?. and another one is null check !! but before figuring out the
difference among both, let’s understand what they are in detail first:

?. - safe call
The best way to access nullable property is safe call operator ?.
This calls the method if the property is not null or returns null if that property is
null without throwing an NPE (null pointer exception).
Safe calls are useful in chains. For example, if Bob, an Employee, may be
assigned to a Department (or not), that in turn may have another Employee as a
department head, then to obtain the name of Bob’s department head (if any),
we write the following
bob?.department?.head?.name
Such a chain returns null if any of the properties in it is null.
Since the return value is null we can combine this operator with let function we
will see later on

The !! Operator
This operator is used to explicitly tell the compiler that the property is not null
and if it’s null, please throw a null pointer exception (NPE). If you are sure that
the property value is not null use ?. instead of !!. Usually we use this when
passing a must non null value to a function. But again be careful while using it.

Elvis Operator (?:)
This one is similar to safe calls except the fact that it can return a non-null
value if the calling property is null
The Elvis operator will evaluate the left expression and will return it if it’s not
null or else will evaluate the right side expression. Please note that the right
side expression will only be evaluated if the left side expression is null.
Elvis is usually used to give default values in case of null:

val str : String? = null
val strLength = str?.length ?: -1 - > strLength equals to -1

We can always preform an explicit null check if(x != null) x.do()
In this case if x is val or local property he will be smart casted to non-nullable
and all is safe. But if it is a var class property the compiler won’t smart cast him
and if you do it by force you will get the following error: “smart cast to ‘[’non
null type] is impossible, because ‘[‘variable name] is a mutable property that
could have been changed by this time” - try to always use vals

If and when
if syntax like Java but each block can return it’s last line - if is not a statement
but an expression!

Branches of if can be blocks. In this case, the last expression is the value of a
block
'if' must have both main and 'else' branches if used as an expression
println - prints on screen
Unit - Kotlin’s void

In Kotlin, if is an expression: it returns a value. Therefore, there is no ternary
operator (condition ? then : else) because ordinary if works fine in this role:

when expression
Similar to switch but No need for case just write the value and -> if it is more
then one line use blocks
Use in or !in for ranges - Kotlin lets you easily create ranges of values using the
rangeTo() function from the kotlin.ranges package and its operator form ..
Usually, rangeTo() is complemented by in or !in functions.
https://kotlinlang.org/docs/operator-overloading.html#equality-and-inequality-
operators

No need for break - won’t got into the next case even without break
Instead of default use else
You can even call functions or operators in the cases
Same as if it can return values

You can use when without the variable name
And not even on the same variable! It is just a collection of boolean conditions
You can use {} inside when for multiple code lines

The advantage is that if one is true then the rest won’t be checked - think when
you want to start the app in condition that all permission granted and all

features enabled and so on, with when you can check all of them in a single
block of code

Arrays
val array = arraOf(….) -> array of objects Kotlin uses Array<Int>
val array: Array<Long> = arrayOf(1,2,3)
joinToString() - > returns string representation of the array (toString just return
the instance address).
val result = arrayOf(1,4,6,8,9)
result.joinToString()
res54: kotlin.String = 1, 4, 6, 8, 9
array[0]
Kotlin provides a selection of classes that become primitive arrays when
compiled down to JVM byte-code.
You can create an array of java primitives with intArrayOf, charArrayOf….
You can sometimes find them in the Android API:

Kotlin.collections
List\MutableList(the regular List of java)
val list = listOf(…)
val mutList = mutableListOf(6,8,7)
mutList.add(7)
list[0] = 90 - > error when its not a mutable list
Please note the Kotlin’s list not only can’t change it’s size but also it’s content

val set = setOf(6,6) only one will stay

val map = mapOf(Pair(1,”Moshe))
To add to the collections use the Mutable(mutable list, set, map…)
map’s put function returns the overridden value
Instead of Pair your can use to infix function — more on infix very soon - but in
short there is to infix extension function to most of the classes that accept
another argument and return a pair with both of them and replaces the dot
notation

●

●

For retrieving a value from a map, you must provide its key as an argument of
the get() function. The shorthand [key] syntax is also supported. If the given
key is not found, it returns null. There is also the function getValue() throws an
exception if the key is not found in the map - if we must pass a non null
reference. Additionally, you have two more options to handle the key absence:

getOrDefault() returns the specified default value if the key is not
found.
getOrElse() the values for non-existent keys are returned from the
given lambda function (more on lambda in the next chapter).

Loops

downTo - inline function for descending order
step - for creating spaces

Once int become Int we get these infix functions and much more
while, do-while - same as Java

Functions
fun - keyword for function declaration

fun [name](params) : [return value]

If no return type is specified then Unit (Java’s void) is omitted - unless it is a
single line function and the return value is inferred

If the function is only one line no need for {} just use =

And in that case the return type can be inferred!

varag - for unknown number of params

Move to IntelliJ IDEA create a new project, make sure your JDK is defined and in
it create a new Kotlin file.

Kotlin enables top class variables and functions - no need for class to
write functions
Kotlin also allows us to define inner functions - function nested inside other
functions

fun main(args:Array<String>) {} [you can shorten by writing main followed by
enter]
Print your first Hello World in Kotlin!!!

note: In Kotlin versions earlier than 1.3, the main function must have a
parameter of type Array<String>.

●

●

●

Create infix functions
Functions marked with the infix keyword can also be called using the infix
notation (omitting the dot and the parentheses for the call). Infix functions must
meet the following requirements:

They must be member functions or extension functions - they must
have this.
They must have a single parameter.
The parameter must not accept variable number of arguments
(varargs) and must have no default value.

Example(an Int extenssion function that concatenating a string to himself a
given times

Usage:

Infix notation also works on members functions (methods):

Please note: We will discuss classes later but for now notice that there is no
new in Kotlin just the class name followed by it’s constructor call.

Look at the smart cast we have seen before in IntelliJ and functions.
Sometimes Kotlin programs need to work with null values, such as when
interacting with external Java code or representing a truly absent state. Kotlin
provides null tracking to elegantly deal with such situations - in the following
example maybeString is smart casted to String

Default arguments
Function parameters can have default values, which are used when you want to
skip the corresponding argument. This significantly reduces the number of
overloads and saves us ALLOT of code.

A default value is defined using = after the type.

Think about how many lines of code you just saved (please note that ByteArray
is java array of bytes - it is not Array<Byte>)

If a default parameter precedes a parameter with no default value, the default
value can only be used by calling the function with named arguments:

1.

We usually put the parameters with default values after parameter with no
default values(no save for the need of using parameters names)

Please note that with default values we still have to write the type. The main
reason is compilation performance. When we look at a method call, it helps a
lot to have explicit parameter types which don’t need to be inferred. Inferring
the parameter type from a string constant is trivial, but if you have fun foo(a =
bar()) and bar() also has an inferred return type, understanding the actual
parameter type of a becomes very expensive.

Drills
Ask the user for his name and his age and print out if he is old enough
to drive (please use the [String].toInt() function but be aware that it
works on String and not String? - what that the redaLine() returns)

Spoilers:
readLine() returns String?
toInt() can be applied only to String
You must use ? Or !!
While ? Can return null you can’t use it in a boolean expression (can’t compare
null)
So the only option is to use !! but be sure to check before using
If you check before then you don’t need !! Kotlin will automatically smart cast
your object to String before applying the toInt() function

Solution:

2.

3.
●

●

●

●

●

Create a concat function that receives a list of strings and a separator
and return one string containing the strings separated with the
separator. If no separator supplied use comma. invoke her twice, once
with the default separator and one with you own.

Solution:

2 - Bonus - do you think you can supply both parameter but in a different order
without changing the function title?

Solution(use parameters names):
val result1 = concat(separator = "-",list = listOf("eran","moshe","dave"))

Function syntax - Create the following functions:
A simple function that takes a parameter of type String and returns
Unit.
A function that takes two strings message and a prefix. the second
parameter is optional with default value “Info”. The function will not
return anything but this time use omitted Unit return value and print to
the screen the prefix followed by the message.
A function that receives two integers and returns their sum.
A single-expression function that returns an integer (inferred) - the
function will receives two Int and returns their multiplication.
A function that takes String varargs and prints them

●

●

Infix function called “onto” that works on two strings (this and the
parameter and return a new Pair containing both of them) - Pairs can
be add to maps like we have seen before. use your infix function with
map initialization.
Create the main function and test all your functions

Solutions:

For more reasons adding on basic functions syntax
https://kotlinlang.org/docs/functions.html

Exceptions
Kotlin solves a very common problem with try-catch block and variable scopes:
In java we sometimes have to define a variable outside the try block and
initialize it to null, we can’t define it inside the try block because of the scope -
if we define him in the try block then it wouldn’t exist outside of it.

Kotlin solve this by with a try - catch block that is also an expression and thus
return a value, the last line in the block is the retuned value :

Please note the we can throw IOException without surrounding it with try catch
block or declare it in the method constructor!

This is not possible in Java cause IOException is a checked exception but in
Kotlin There are no checked exceptions!! like C# and Ruby All is un-checked
exceptions meaning it’s your responsibility!
Thats why the keyword throws does not exists in Kotlin

Be responsible! Kotlin is more interested in saving us lines of code then in being
our Mom and Dad :)

Kotlin Functional Programming

Download the full source codes from here
https://drive.google.com/file/d/1JyVLjUWXQbmXIkUifjKlfzh-iipPNhv4/view?
usp=sharing

Kotlin is not a pure functional language but do support Lambdas and High order
functions.

Lambdas - anonymous functions
Lambda expressions and anonymous functions are function literals. Function
literals are functions that are not declared but are passed immediately as
an expression

We created an anonymous function and save her in a val later we will send it to
another function. The function that receives it is will be called an High Order
function.

Our Lambdas can be shorter using Type inferred - Kotlin deduced it from the
function - but remember pשrameters types can never be inferred.

We can use Lambdas in High order functions - functions that receives other
functions as arguments
filter() - a pre-existing high order function that filtering a list using a given
predicate. A Predicate is a lambda function that take a collection element and
return a boolean value: true means that the given element matches the
predicate, false means the opposite

1.

2.

Because the function receives Lambdas we can discard the () also if
the lambda is the last parameter it can be written outside the
parentheses
Implicit it - if the Lambda has only one parameter it can be implicitly
called by it

According to Kotlin convention, if the last parameter of a function is a function,
then a lambda expression passed as the corresponding argument can be
placed outside the parentheses - Such syntax is also known as trailing
lambda.

When using default parameters, If the last argument after default parameters is
a lambda, you can pass it either as a named argument or outside the
parentheses. If the lambda is the only mandatory argument in that call, the
parentheses can be omitted entirely:

You can explicitly return a value from the lambda using the return syntax.
Otherwise, the value of the last expression is implicitly returned.

If the lambda parameter is unused, you can place an underscore instead of its
name:

Function pointer ::
If we want to pass non-anonymous function we can use the :: which is a
function pointer

The filter function will call the isEven function passing it each element on the
list and will filter by it’s result

map
Returns a list containing the results of applying the given transform function to
each element in the original array

In the last example we get a list of Boolean since it is the result of applying the
contains function.

flatMap
Returns a single list of all elements yielded from results of transform function
being invoked on each element of original array.

In other words both function applies a function to each of the elements but flat
map also “FLATTEN” it - To understand what flattening a stream consists in,
consider a structure like [[1,2,3],[4,5,6],[7,8,9]] which has "two levels".
Flattening this means transforming it in a "one level" structure :
[1,2,3,4,5,6,7,8,9]

1.

2.

Please note that in the above example the it refers to the list inside - the it the
inner object

More on collection sorting here (please read and note the sortBy function that
also receives a selector)
https://www.baeldung.com/kotlin/sort

Let’s use complex data like JSON objects.
Lets make a data structure of parents and their children and play a little

Drills
Using the data above Print one list that contain only the ages of 1 to 10

Solution:

Define a map which contain each parent and his children ages (not list
of maps, just one map) and put some faulty ages between the correct
ones (like -6 or 150). Then print out the average children’s age of each
parent (take only the valid ages to the already exist Kotlin average()

2.

3.

4.

5.

6.

function) - use map this time. Try to solve this in two ways, use both
lambdas and the :: (function pointer)

Solution:

Now print the average of all the children together

Solution:

Print the names of parents with faulty ages. Hint: search the Kotlin API
for function that applies boolean condition on a list

Solution:
any() - Returns true if at least one element matches the given predicate
(boolean values functions)

Print the number of faulty ages

Solution:

Print only the names of the parents who has no faulty data (use all())

Solution:

take(n) - takes only the first n elements
drop(n) - leaves the first n elements and leaves the rest
first(), last() - the first and last elements of the list

takeIf()
take the list if the the given predicate gives true
Take the list if it contains 4 if not we will get null

Note: takeIf() and takeUnless() is part of the Kotlin Standard library and will be
mentioned later on. It can be applied to any instance of any class.

zip() - create list of Pairs. each pair will consist of key from the first list and
value from the second. If one list in longer then the second it’s extra values will
be ignored

Drill
Use zip function to create a list of pairs that each pair’s key is the name and the
value is true or false whether the name contains the character ‘a’

For more reading on קצ and High Order functions:
https://kotlinlang.org/docs/lambdas.html#higher-order-functions

Lazy Sequence

This is about 1-2 seconds

This takes only 10 mili-seconds

Sequences are containers where the main difference between them and all the
other collections is that the actual computing is done only when needed - in
both examples we only needs the first 1000 not on all of the elements. In the
first example the computations were made on all the list, but in the second one
the computations were made on only the ones we needed - the first 1000
elements - this is the meaning of Lazy Sequences. And in general Lazy is a
wide concept in Kotlin meaning that it’s only done when needed.

Because of this Sequences can be infinite.

 If we don’t take the first 1000 the program will go to infinite loop - he tries to
turn infinite loop into list

Lazy Algorithm for finding prime numbers - Sieve of Eratosthenes
This algorithm is based on taking each number and removes all his
multiplications

Drill - Advance
Build an algorithm based on the sieve of Eratosthenes that print the first n
primes - use sequences

Solution:

●

●

●

●

●

●

●

●

●

●

Scope functions

The Kotlin standard library contains several functions whose sole purpose
is to execute a block of code within the context of an object. When you call
such a function on an object with a lambda expression provided, it forms a
temporary scope. In this scope, you can access the object without its name.
Such functions are called scope functions. There are five of them: let, run,
with, apply, and also.

Basically, these functions do the same: execute a block of code on an object.
What's different is how this object becomes available inside the block and what
is the result of the whole expression.
Here is a short guide for choosing scope functions depending on the intended
purpose:

Executing a lambda on non-null objects: let
Introducing an expression as a variable in local scope: let
Object configuration: apply
Object configuration and computing the result: run
Additional effects: also
Grouping function calls on an object: with

here are two main differences between each scope function:
The way to refer to the context object
The return value.

The scope functions differ by the result they return:
apply and also return the context object.
let, run, and with return the lambda result.

The return value of apply and also is the context object itself. Hence, they can
be included into call chains as side steps: you can continue chaining function
calls on the same object after them. They also can be used in return statements
of functions returning the context object.

let, run, and with return the lambda result. So, you can use them when

assigning the result to a variable, chaining operations on the result, and so on.

let()
define a scope a variable - it applies the the variable that we opened the scope
on, we can give it a name

We can use run() and instead of the lambda argument (it) we have the
lambda receiver (this):

On the other hand, if this is omitted, it can be hard to distinguish between the
receiver members and external objects or functions. So, having the context
object as a receiver (this) is recommended for lambdas that mainly operate
on the object members: call its functions or assign properties.

Drill
Create a list of names and print the size of only the names that are longer then
3 using let

If the code block contains a single function with it as an argument, you can use
the method reference (::) instead of the lambda:

We can use let for working with nulls - we enter the block only if it exists maybe
aging str is not null

run()
run is used to execute a block of code and return the result - if the run function
invoked on an object - not mandatory - unlike let - you can refer it by this (not
it like let), like let it returns the lambda result

Combine let and run :

also()
also is very similar to let but instead of the lambda result it return the object
itself (both have it)

The also expression returns the data class object whereas the let expression
returns nothing (Unit) as we didn’t specify anything explicitly.

apply
The context object is available as a receiver (this). The return value is the
object itself.
This is what differentiate it from also - Apply and also are almost the same
apply has this and also it

Use apply for code blocks that don't return a value and mainly operate on the
members of the receiver object. The common case for apply is the object
configuration. Such calls can be read as “ apply the following assignments to
the object.”

1.

2.

On the other hand, We should use also only when we don’t want to shadow this.

with()
“with this object, do the following.” - we have this

Because we have this it is very similar to apply but with 3 major difference:
Apply must work on an instance (the receiver) in with the instance is
supplied as a parameter
with returns the lambda’s result:

For more reading on scope functions:
https://kotlinlang.org/docs/scope-functions.html

Please Notre that all of the scoped functioned mentioned above are part of the
Kotlin’s standard functions
There you can also find a function we already discussed takeIf() &
takeUnless()

Lets look closely on takeIf:

●

●

●

From it, we notice that
It is called from the T object itself. i.e. T.takeIf.
The predicate function takes T object as parameter
It returns this or null pending on the predicate evaluation.

Thus it is very useful in null checks:

You can read more on takeIf() from where is example is taken from

use()
Executes the given block function on this resource and then closes it down
correctly whether an exception is thrown or not.
Must be used on objects that implements the java closable interface

No need to close the FileReader

Inline function
All of our scoped functions were inline
Meaning the compiler copies the function code to the place where the we
invoke it
When using lambda the compiler create an instance of the function each
time unless we declare the function be inline and then he just copies the
function code

If we add the keyword noinline before the lambda the compiler will alert us that
the inline keyword has no meaning cause it saves time when working with
functions

Operator Overloading in Kotlin

Use operator keyword before the fun

We already have by default the == and != when we override the Any’s equals()
method

We can overload the plus, minus, times, unsayMinus, unaryPlus, inc(++),
dec(—), and not

Kotlin has a special treatment of Java's Comparable.
Simply put, we can call the compareTo method in the Comparable interface by a
few Kotlin conventions. In fact, any comparisons made by “<“, “<=”, “>”, or “>=”
 would be translated to a compareTo function call.

In other words, If we want to overload the > , >= and < , <= we need to
implement the Comparable interface

Kotlin OOP

Download the full Chapter source code from here:
https://drive.google.com/file/d/1tpnZlXR7vaBfdJFVjOEw7x4BoRubKFjk/view?
usp=sharing

In Kotlin all objects inherit from class Any (it has toString, equals & hashCode)
Unlike Java in Kotlin we can combine few public classes in one file

Lets make our first class:

Class student has an empty constructor
s has only the functions from Any
If we want the java setter we set it’s properties as var if we want only
getters they will be val
init function is called in any instance creation - no matter which constructor we
invoked

Please notice that when printing s.first and s.age we use {} meaning it’s actually

a function invocation! Calling the get…
The . Actually invoke the getter that was auto generated
Same as s.age = 80; -> this only ok if age is var and not val because the setter
is invoked
These are Properties

A better way for writing the class - Kotlin way

The init is still called before the initialization

A better way then this (show with auto correction)

This is the primary constructor!

When we add the var or val in the constructor then we set the properties to
the parameters passed to the constructor and there will be default getters and
setters according to the var or val. That is why we see classes that are just one
line with no body

Think of how coding you just saved!

If we want our custom getter and setter we can’t declare the properties in the
constructor but in the class body and provide a custom get() and set(value)
functions
field - reference for the actual value

Because of default parameters we usually don’t need ctor overloading

If age is not passed to the ctor then he will get the default value

Please note that If you supply one value, it’s used for the first named parameter
(you can use parameters name to overcome this) so it generally doesn’t make
any sense to provide a default value for an early parameter without providing a
default for subsequent parameters.

If you’re not going to provide default values for all parameters, you should only
provide default values for the last parameters in the constructor:

In this case you need to specify the second parameter by his name

If for some reason we want the java way or you want a whole new constructor
all together you can create another one it is called secondary constructor. We
can do it using the constructor keyword (in the primary ctor the keyword is
deferred). We can delegate to the primary constructor

In this case if we create a Student with name alone he will be 40 and not 20!
The system will always look for the exact constructor before applying default
values!.

private constructor
To avoid the public constructor in cases such as singletons add the private
constructor() after the class declaration or inside the class body - better as
primary constructor (in the class declaration)

lateinit var
Some variables needs to initialize later we can use the lateinit var

In this case the compiler won’t show the compilation error of the var not being
initialize BUT be careful from accessing the variable -
UninitializedPropertyAccessException will be thrown at runtime

Only lateinit var exist not val (the lateinit gives it some initial value) and it’s not
working on all the Java primitives(Int, Double, Char…).

Delegated properties
Another way of late initialization is using delegated properties: we will
create an object that when we first access it’s properties the delegate
object is created and store the value computed in the object. This can also
work on java primitives.

The syntax is: val/var <property name>: <Type> by <expression>

The expression after by is a delegate. The get() and set() corresponding to the
property that will be delegated to its getValue() and setValue() methods.
Property delegates doesn’t have to implement any interface, but they have to
provide a getValue() function (and setValue()--- for var s).

If we are want val or one the java primitives to get a later value we can use this
delegate:

But again be careful from accessing it before initialization
Take a look at his code:

Another option is using the lazy function
The lazy function will be invoked only when the object id accessed for the fist
time

The println is used to show you that the initialization is happening only when
first accessed

Another example in using observable delegates
Delegates.observable - Returns a property delegate for a read/write property
that calls a specified callback function when changed.

If you want to intercept assignments and veto them, use vetoable() instead of
observable(). The handler passed to the vetoable is called before the
assignment of a new property value.

You read more about the concept of Delegates and maybe create your own
here:
https://kotlinlang.org/docs/delegated-properties.html
And of course on in this course we will have our own delegate that changes the
property value according the the attached fragment lifecycle.

Class extensions
We can add functions to existing classes in Kotlin using the class name before
the function name.

Inside the function we have this

Data class

Using the keyword data we can use Kotlin to create everything needed for a
data class - equals, hash-code, toString, copy and more (a Whole file in java is
just one line)

In Data classes a componentN function is created for each the the properties.
We can use this for destructuring declaration

Destructuring declarations
A destructuring declaration creates multiple variables at once(only local
variables).

If you don't need a variable in the destructuring declaration, you can place an
underscore instead of its name:

The restructuring declaration can also help us in a variety for other things, for
example when iterating on a map objects

They are also used for function calls that we want to return more then one value
and no need for the wrapper object

Inheritance

The derived class doesn’t need to add val or var to arguments already defined
in the parent class.

Inheritance is defined by :

All Kotlin classes are final by default! This is mainly because almost no one
wrote final in java
When we want to inherit form a class it must be declared as open
All the function that we want to override must be open

In Kotlin we can also override the class properties in cases where we want to
add a setter for the child or write a different get and set functions.
If the property is val in the parent class in the derived class it can be either var
or val - just add a setter - but if it var in parent class it can’t be val in the child
- we can’t vanish the setter it already has one.

This is an error - we can’t hide the parent name but we can override it and add
a setter and a different default value

We can also change the parents getter function:

Overriding methods always use the same default parameter values as the base
method.
When overriding a method that has default parameter values, the default
parameter values must be omitted from the signature

It make more sense for Shape to be abstract - the area function needs to be
abstract
No need for open when using the abstract keyword same in functions or in
classes

Casting(is, as and as?)
Kotlin can smart-cast our objects if we check them before using is -Note that
smart casts work only when the compiler can guarantee that the variable won't

change between the check and the usage so it always works on val but only on
var local properties(the compiler can track the local variables)

If we want to cast the object ourselves we can use the unsafe as operator -
Usually, the cast operator throws an exception if the cast isn't possible. And so,
it's called unsafe. The unsafe cast in Kotlin is done by the infix operator as.

Or if you want to avoid exceptions, use the safe cast operator as?, which
returns null on failure.

For more reasons adding on Type check and castings
https://kotlinlang.org/docs/typecasts.html#type-erasure-and-generic-type-
checks

Interfaces

Until now it was the same as Java but:
Interfaces in Kotlin can contain properties (without initialization) but when
implementing it we must override it

We can also define a default function implementation and in that case we don’t
have to override it. But that can cause the diamond problem and we solve it
using the <[which]>

This is ok

But if Shape has fill and also there is a default implementation in the interface
which fill will be called and we solve it using <[parent]>

Object Expressions and Declarations

Object expressions create objects of anonymous classes, that is, classes that
aren't explicitly declared with the class declaration - with a specific name. Such
classes are useful for one-time use. You can define them from scratch, inherit
from existing classes, or implement interfaces. Instances of anonymous classes
are also called anonymous objects because they are defined by an expression,
not a name - Anonymous inner classes

Like in java Anonymous class can access outside class members

N
When only one function exist in the interface (SAM - Single Abstract Method)
we will use Lambda and not object expression(will be discussed later on).

Another simple example :

Object declarations
Object declaration always has a name following the object keyword. Just like a
variable declaration, an object declaration is not an expression, and it cannot
be used on the right-hand side of an assignment statement.

The initialization of an object declaration is thread-safe and done on first
access. To refer to the object, use its name directly.

Kotlin makes it easy to declare singletons using object declaration:

Please note the because this is an object declaration it has no constructor and
there is only one instance so it already a singleton!

However, this is ok (this is just giving the object a different reference):

Such objects can have super-types and we can create a non anonymous single
implementation

Companion objects
An object declaration inside a class can be marked with the companion
keyword
This replaces the java statics.
Only one instance of the companion object is created for all instances of the
class - it is an object - one per class like the static initializer - when we load
the class to the memory for the first time then the companion object is created
for all the upcoming instances that will share it.

Please note that it must be an object and inside it we will declare both
properties and functions

The default companion object name is Companion but we don’t need to specify

●

●

it just use the class name, you can also give the companion object a name but
that is truly unnecessary

If you have only one companion object you can still access it with the class
name. And since each class is allowed only one companion object the naming is
quite unnecessary and use it only if it makes your code more organized.

If you need the companion object itself just use the class name (or if it has a
name - his name)

Note that even though the members of companion objects look like static
members in other languages, at runtime those are still instance members of real
objects, and can, for example, implement interfaces:

However, on the JVM you can have members of companion objects generated
as real static methods and fields if you use the @JvmStatic annotation. See the
Java interoperability section for more detail.

There is one important semantic difference between object expressions and
object declarations:

Object expressions are executed (and initialized) immediately, where
they are used.
Object declarations are initialized lazily, when accessed for the first

●

●
time.
A companion object is initialized when the corresponding class is
loaded (resolved) that matches the semantics of a Java static
initializer.

For more reading:
https://kotlinlang.org/docs/object-declarations.html#using-anonymous-
objects-as-return-and-value-types

Functional (SAM) interfaces
An interface with only one abstract method is called a functional interface, or a
Single Abstract Method (SAM) interface. The SAM interface can only have one
abstract method. To declare SAM interface use the keyword fun before the
interface

The main advantage:
Instead of creating a class that implements a functional interface manually, you
can use a lambda expression. With a SAM conversion, Kotlin can convert any
lambda expression whose signature matches the signature of the interface's
single method into the code, o
For example
Take the following interface:

If you don't use a SAM conversion, you will need to write code like this:
// Creating an instance of a class

By leveraging Kotlin's SAM conversion, you can write the following equivalent
code instead:
// Creating an instance using lambda

And in main function:

You will use this allot in Android programming just think of the OnClickListener
interface, isn’t it SAM?

Nested and inner classes

In Kotlin like in Java we can nest a class within another class (this is simply a
structural thing):

Note that Nested can’t access bar.

You can make a nested class Inner using the inner keyword before the class
declaration.
A nested class marked as inner can access the members of its outer class!

Inner classes carry a reference to an object of an outer class. In nested class
we don’t need to create an instance of the outer class just use it’s name (like
we said before it’s a structural thing). But if it is an inner class we must create
an instance of the outer class to get and instance of the Inner class:

Access Modifiers
private - same as java
public - the default in Kotlin!
protected - same as java
internal - equivalent to java package level - same Module - a set of Kotlin files
compiling together - In android same Gradle or Maven

We can use as keyword for direct name for imported classes

Generics - covariance and contravarince
In case we want to define a generic class and later narrow the generic type (we
used ? Extend Object in java) this is a problem since we set a more specific
type of the generic, and we can add things at compile time that will crash at
runtime!

The problem is that in the reference he accepts wider objects then in runtime

We can use the out keyword next to the generic to specify the T will only be
used as return value - and the problem solved - covariance - because if it will
be used only as a return value then the user won’t be able to cause the problem
mentioned before.

Same in the opposite direction - we can specify the keyword in for generics
that will only we used as parameter - think of a getter that suppose to return
String but actually return Any - this is a problem! but think of a setter that
suppose to get String and get Any - this is no problem - contra variance

Its also possible to define both:

sealed
Sealed classes and interfaces represent restricted class hierarchies that
provide more control over inheritance. All direct subclasses of a sealed class
are known at compile time. No other subclasses may appear after a module
with the sealed class is compiled. For example, third-party clients can't extend
your sealed class in their code. Thus, each instance of a sealed class has a type
from a limited set that is known when this class is compiled.
This is very useful when checking instances of a curtain class with when()
because first if we choked all known subclasses then we don’t need else and
more then that the compiler warnings that tells us that we forget to check a
curtain subclass can save us allot debugging time.

A sealed class is abstract by itself, it cannot be instantiated directly and can
have abstract members.
Direct subclasses of sealed classes and interfaces must be declared in the
same package.

Getting started

Download Android Studio Guide fore here:
https://drive.google.com/file/d/1AGCDM9cX2J0vfGKW1Q1O--iKACx4RxeM/
view?usp=sharing

Download the full UI Guide from here
https://drive.google.com/file/d/1lIB4jGart0MifC6kkgSExKFti3EeHxv-/view?
usp=sharing

Download the Full app created from the guide
https://drive.google.com/file/d/16x48WtHTlruxEHbv8EKA_Dze6PSQxPpR/view?
usp=sharing

Download the picture archive file
https://drive.google.com/file/d/1N4MXLjFKFGPy1kkUhFDqhGBi5sSP6vIf/view?
usp=sharing

© 2022 All rights reserved.

Open a new project in Android Studio
In this tutorial we will create a new project in Android Studio. Creating a new project is
very simple. First, click on File Æ New Æ New Project. A new project dialog will pop up,
with various templates. Android Studio provides many templates that we can choose
from. Each template contains pre-generated code that is often used when creating a new
project with specific components.

For now, we will create a new project containing a single Empty Activity.

After Clicking Next, we need to provide initial configuration settings.

© 2022 All rights reserved.

Name Ɓ The name of the application.
Package name Ɓ The name of the application root package name.
Save location Ɓ Local directory of the project.
Language - Project language.
Minimum SDK Ɓ The minimum SDK version of the Android operating system required to
run the application.

After setting initial settings, click Finish. After Some processing, The Android Studio
main window appears.

The MainActivity is the entry point for the application. When we build and run the app,
the system launches an instance of this activity and loads itƅs layout set with
setContentView().

The Manifest file describes the basic characteristics of the app and defines each of its
components.

The XML file defines the layout for the activityƅs UI. The default activity_main.xml file will
contain a simple TextView with the text ƈHello, World!Ɖ.

The gradle contains two gradle files: one for the project, and one for the app module.
Each module has its own build.gradle file.

The appƅs gradle contains the SDK
versions the app is using, compile
options. Plugin declarations, and more.
If we need to integrate a dependency
into our app, we specify it in the
ƈdependenciesƉ block.

© 2022 All rights reserved.

In order to run the app, click on the play icon in the top bar.

In the image above, an emulated device is set to run the app. If you have a physical
device connected, it will show the device in the device window. Make sure to enable USB
debugging on the device:

1. Open the deviceƅs settings.
2. Search for the developer options. If you donƅt see it, go to the About section in

the settings, and tap the build number until a message appears saying you have
access to developer options.

3. Enter the developer options, and scroll to the ƈEnable USB debuggingƉ. Enable the
USB debugging. This will let us connect our device to the Android studio and run
our app on the device.

© 2022 Marko Katziv, All rights reserved.

Android User Interface Introduction
In this tutorial we will go over the different views that can be used inside an Android app.
Understanding views and how to interact with them is a MUST for every android developer.

So what is a view?

From a user perspective, views are the visible stuff on the screen inside an app. Images ,
texts, buttons, cards and more, are all views. A View occupies a rectangular area on the
screen and is responsible for drawing itself and handle its events such as touch events,
clicks, swipes, state and more.

The View class itself is the base class for all views. Not all views inherit directly from it,
some of them inherit from a different view. But because the View class is the base class,
all views share a lot of functionality and attributes, but have their own special attributes
and methods.

Some commonly used views (may be referred to as widgets) in applications are:

x EditText Ɓ lets the user input some text.
x TextView Ɓ provides an area in which we can insert some text (mostly used for

none-editable text)
x Buttons Ɓ provide users with a clickable widget.
x ImageButton Ɓ Displays a button with an image that can be clicked.
x ImageView Ɓ provides an area in which we can insert an image.
x SeekBar Ɓ provides a visible and draggable indicator to the progress of an

operation (like the YouTube progress bar in a video)

All views can be made clickable, Not just buttons (and also not clickable). Most views
may be transformed in terms of content, visibility, size and animation. There EVIRƅX�E�XSR
of different types of views, but each view has its own attributes and functionality that
differentiate it from other ones, and make it suitable for what we want to achieve.

Some views may contain other views, meaning a view can have children, and a parent.
This type of view is called a ViewGroup, and it inherits from the View class.

© 2022 Marko Katziv, All rights reserved.

ViewGroup

A ViewGroup is a subclass of the View class. It provides a space (invisible or painted) to
hold other ViewGroups and views. Inside it, we can arrange the views by setting up their
attributes, including values for their position inside the ViewGroup.

-R�SVHIV�XS�GSRXEMR�SXLIV�ZMI[W��[I�HSRƅX�YWI�XLI�:MI[+VSYT�GPEWW�HMVIGXP]��FYX�
use a Layout class that inherits from it.

Some commonly used layouts in applications are:

x LinearLayout Ɓ Sets the views inside it one after the other - horizontally or
vertically.

x ConstraintLayout Ɓ Sets the views inside it by constraining them to a specific
view or its parent.

x RelativeLayout Ɓ Sets the views inside it relative to other views.
x RadioGroup Ɓ A class that inherits from LinearLayout, and can contain

RadioButton views

 ViewGroups can contain other viewGroups and views

Two RadioButton views inside a RadioGroup.
RadioGroup allows us to control a group of radio

buttons, and make sure only one is checked

Note: The way the layout draws itself is by traversing the view tree 2 times. On the first pass it
measures the view tree recursively, calculating the dimensions of all the views. On the second
pass, each view layouts all of its sub views according to their calculated size from the first pass.

© 2022 Marko Katziv, All rights reserved.

Before we go further about View and ViewGroup, letƅs go over some basic measure units
and constants that help us work with the different views.

DP vs SP vs PX

x DP Ɓ Density Independent Pixels Ɓ This unit is based on the physical density of
the screen. 1 DP is roughly equal to 1 pixel. This ratio will change with the screen
density, but not necessarily in direct proportion. Using this unit makes the view
size inside the layout resize properly for different screen densities.

x SP Ɓ Scale Independent Pixels Ɓ This unit behaves like the DP unit, but it is also
WGEPIH�F]�XLI�YWIVƅW�JSRX�WM^I�WIXXMRKW��7S�JSV�GSRXVSPPMRK�XLI�WM^I�SJ�XI\X��[I�YWI�
this unit, and use the DP unit for everything else.

x PX Ɓ Pixels Ɓ Actual pixels on the screen. This unit is not recommended because
screen resolution and size change from device to device, so on one device our
view may seem fine, but on another device Ɓ completely messed up.

Padding vs Margin

x Padding Ɓ 8LI�WTEGI�FIX[IIR�E�ZMI[ƅW�GSRXIRX�ERH�Mts border.
x Margin - 8LI�WTEGI�FIX[IIR�E�ZMI[ƅW�FSVHIV, its parent layout and other views.

We can set these properties for a specific side of the view (bottom, up, left, right), or apply
them on all the sides. Both of these attributes should be in DP units. If you choose to apply
on one side, MXƅW best practice to apply it on the other side as well (up and down, left and
right). This is in order to keep everything symmetric, and support a Right-To-Left direction
(explained later on).

Note: when using padding or margin or any other attribute that can be set to a specific side, it
is best to use start and end instead of left and right. Different languages such as Hebrew and
Arabic requires support for RTL direction, and choosing actual sides PMOI�PIJX�ERH�VMKLX�MWRƅX�XLI�
same in English. start and end will set the correct side based on the device current language
preferences.

© 2022 Marko Katziv, All rights reserved.

Constants

Instead of exact size in DP units, we can use constants. The most common are the
match_parent and wrap_content constants.

x match_parent Ɓ MRWXIEH�SJ�HIJMRMRK�XLI�ZMI[ƅW�LIMKLX�ERH�[MHXL�[MXL�WTIGMJMG�
values, we can set it up to QEXGL�XLI�TEVIRXƅW�ZEPYI. So for example if we set a
8I\X:MI[ƅW�[MHXL�XS�QEXGLCTEVIRX��MX�[MPP�hold the whole width of the parent

x wrap_content Ɓ MRWXIEH�SJ�HIJMRMRK�XLI�ZMI[ƅW�LIMKLX�ERH�[MHXL�[MXL�WTIGMJMG�

values, we can set it up to match its content width. So for example if we set a
8I\X:MI[ƅW�[MHXL�XS�[VETCGSRXIRX��XLIR�MX�[MPP�FI�XLI�exact width that is needed
XS�LSPH�XLI�ZMI[ƅW�GSRXIRX�

Gravity Constants
;I�GER�ƈERGLSVƉ�XLI�ZMI[�XS�E�WTIGMJMG�WTSX�MR�MXW�TEVIRX�PE]SYX�SR�FSXL�<�ERH�=�E\MW�

x android:gravity sets the gravity of the content inside the view. It is used to
control the gravity of all child views in the view it is used on.

x android:layout_gravity WIXW� XLI� ƈSYXWMHIƉ� KVEZMX]� SJ� E� ZMI[�� -X� MW� YWIH� XS�����
control the gravity of the view it is used on, inside its parent.

There are a lot more constants that we use when creating a user interface. for example,
choosing a vertical LinearLayout or a horizontal one is also defined by a constant.
Constants are basically presets that we can use in order to define the different views.
During this tutorial, it is very recommended to play around with them, and see different
results.

Note: The blue border in the images is not present in the app itself. It is a part of the preview
that the Android Studio presents, to show the developer the actual border of the view.

© 2022 Marko Katziv, All rights reserved.

XML Files

XML stands for Extensible Markup Language. Through these files we define our views
and resources. There are more than one type of XML resource file and each one serves
a different purpose:

x Layout XML files Ɓ Contains data about all the views and widgets. These files
are inside the res/layout folder

x color.xml Ɓ xml type that holds our predefined colors. This file is inside the
res/values folder.

x strings.xml Ɓ xml type that holds our predefined texts. This files is inside the
res/values folder.

x themes.xml Ɓ xml type that holds our predefined styles for views. This file is
inside the res/values folder.

x drawable Ɓ xml type containing graphics such as backgrounds and effects.
This file is inside the res/drawable folder, alongside raw images

x Animation XML files Ɓ xml type that holds animation settings. This file requires
us to create a new directory named anim, under the res folder.

x manifest.xml Ɓ This file contains essential information about the app such as
activities, services used, permissions, app icon, RTL support and more. This file
is inside the app folder.

© 2022 Marko Katziv, All rights reserved.

For now, we will focus on the Layout XML. When creating a new layout file, we often
start with a layout that will be responsible for holding all the other views and widgets in
the layout.

-RWMHI�XLI�VIW�JSPHIV�SJ�XLI�TVSNIGX��XLIVIƅW�E�PE]SYX�TEGOEKI�XLEX�GSRXEMRW�EPP�XLI�PE]SYXW�
of the application. To create a new layout, right click on the layout package and select
New -> Layout Resource File.

You can choose the Root element when creating the file, or simply change it after that.
After clicking OK, a new layout file will open with the selected layout as the Root layout:

Note: Layout resource files may also have a single view in them, without any sub views or a
parent layout. Discussed later on.

© 2022 Marko Katziv, All rights reserved.

Take a look at the following XML code and its preview:

There are 3 types of views inside a vertical LinearLayout: TextView, ImageView and an
EditText.

Lines 2- 29: LinearLayout
As mentioned, This is a ViewGroup type, so it can have other views inside it.
8LI�PE]SYXƅW�EXXVMFYXIW�[MPP�FI�MRWMHI�XLI�WXEVXMRK�XEK��ERH�MJ�MX�LEW�ZMI[W�MRWMHI�MX��[I�RIIH�
to provide a closing tag (line 29).

Attributes:

x layout_width and layout_height Ɓ these attributes specify the basic width and
height of the view. These are required for all views. By setting the width and the
height, the parent view knows how much space the view is going to hold. In the
image above, The main layout is set to match its parent height and width, so it
holds all the space in the screen. To be exact, it takes all the space its parent will
give it.

© 2022 Marko Katziv, All rights reserved.

x orientation Ɓ As mentioned before, we can set up views in this layout vertically or
LSVM^SRXEPP]��-R�XLMW�GEWI�MXƅW�vertical, so each view will be presented in the order
that we put it in the XML code.

x padding Ɓ a padding of 15 DP is set on the LinearLayout, so all its children are
pushed 15 DP into the center.
xmlns Ɓ XML namespace. Used to avoid long repetitive prefixes. So instead of
the whole path, we just use android

Lines 8- 13: TextView
This widget provides us with space for simple text. It cannot hold other views, so a closing
tag is not needed.

Attributes:

x layout_width and layout_height Ɓ the TextView is set to match its parent width.
Its height is set to wrap its content, so the height of the TextView is as the text
height ().

x gravity Ɓ &IGEYWI�[IƅZI�WIX�XLI�8I\X:MI[ƅW width to match its parent, we can
center the text to be exactly at the center of the parent layout by centering the
text inside the TextView.

x text Ɓ This attributes lets us define the text of the TextView.
x textSize Ɓ We use SP units to define the texts size.

Lines 15- 20: ImageView
This widget provides us with space for an image or a drawable. It cannot hold other views,
so a closing tag is not needed.

Attributes:

x src - The src attribute takes a path to an image or a drawable, and displays it within
the bounds of the view.

© 2022 Marko Katziv, All rights reserved.

x layout_margin Ɓ sets the space between its borders and the rest of the layout.
x width and height Ɓ set to be 100 DP. Actual sizes may varies in different screen

densities.

Lines 22- 23: EditText
This widget provides us with space for user input.

Attributes:

x layout_width and layout_height Ɓ the EditTextƅW�LIMKLX�ERH�[MHXL�EVI�WIX�XS�[VET�
its content.

x gravity Ɓ &IGEYWI�[IƅZI�WIX�XLI�)HMX8I\XƅW�[MHXL�XS�[VET�MXW�GSRXIRX��[I�GERƅX�YWI�
gravity to try to center it in its parent layout. To do that we need to use
layout_gravity. Setting the layout_gravity to center will put the content to be
exactly at the center.

x text Ɓ This attributes lets us define the text of the TextView.
x textSize Ɓ We use SP units to define the texts size.
x hint Ɓ sets a text that is shown until an input is inserted into the view.

Note: A ViewGroup can contain other views so we close out its starting tag with a right arrow
symbol XS�MRHMGEXI�MX�MWRƅX�ƈGPSWIHƉ, after declaring its attributes. A regular View cannot hold other
views, so its starting tag is closed with a right arrow prefixed with a slash symbol �ƈ�Ɖ
��[LMGL�
completely closes out the view, just like a full closing tag closes a layout (line 29).

 Note II: all attributes of all views will be overridden once changed in runtime.

© 2022 Marko Katziv, All rights reserved.

Adding Views

We can add views to our app either by putting them inside an XML file, or by code. As
mentioned, all views have a set of attributes that are available to be configured. Setting
up attributes in the XML file will make them known at compile time, and the Android Studio
will be able to provide a preview for them.

0IXƅW�JSGYW�SR�EHHMRK�ZMI[W�F]�<10�JMVWX� In order to add a view by xml, we start with a left
EVVS[�W]QFSP� �ƈ Ɖ
� ERH� XLIR� XLI�2EQI�SJ� XLI� ZMI[�� 8LI� %RHVSMH� 7XYHMS� LEW� E� FYMPX� MR�
sentence completion system, so once you start typing your view, it will offer you a list to
choose from.

3RGI�]SY�GLSSWI�XLI�ZMI[�]SY�[ERX��MXƅW�XMQI�XS�HIGMHI�MXW�MRMXMEP�EXXVMFYXIW��

%JXIV�[IƅZI�WIX�XLI�ZMI[�MR�XLI�\QP�JMPI��[I�need a way to interact with it. In order to do that,
we need to uniquely identify it, and then bind to it by code. Any View object can have an ID
so it can be uniquely identified. We may repeat the same ID in different layouts and the
compiler will recognize which view we are referencing.

AppCompat views: :MI[W�XLEX�LEZI�ƈ'SQTEXƉ�MR�XLIMV�REQIW�EVI�ZMI[W�XLEX�WYTTSVX�GSQTEXMFPI�
features on older versions. Some views such as a Button or an EditText are actually using the
compatible version automatically.

© 2022 Marko Katziv, All rights reserved.

Specify the variable type

In line 31, an ID attribute has been given to the Switch view. We write the ID as a string,
but it is translated into an Integer that is associated with the view. 0IXƅW�FVIEO�XLMW� PMRI�
down:

x @ - This symbol at the beginning indicates that this is an ID resource.
x + - This symbol means that this is a new resource name that must be added to our

resources.
x id/ - after these characters, the actual ID starts.
x my_switcher Ɓ the actual ID.

Binding to Views

After adding the view to our app, we can launch it and see our new view. But if we need to
interact with XLI�ZMI[ƅW�TVSTIVXMIW, or add a listener to it, [I�GERƅX FIGEYWI�[I�HSRƅX�LEZI�
any control over it. In order to make it do the things we want, we must bind to it. So after
giving a View an ID, we can reference it using the AppCompatActivity.findViewById()
method.

AppCompatActivity.findViewByID()

This method allows us to search for an id within all the views of an activity. The View class
also has this method but will strictly search the view itself and its sub views, and not the
whole activity.

The findViewById() method is written in Java and returns an instance of a view that is a
Platform type�(�!� symbol)� meaning referencing it would be as it MWRƅX nullable, even
though it can be. This is in order to treat them the same as in Java in terms of nullability.

The returned instance needs to be specified:

Note I: The syntax for giving a view an ID is the same for all views.

Note II: Sometimes not all views require an id, just the ones we
need to reference. In some other times, ids are required in order to
parse the XML and preview the correct data (for example:
MotionLayout).

Note III: The SwitchCompat view is a CompoundButton type which
inherits from the Button view. This kind of button has two states-
checked and unchecked. When the button is clicked, the state
automatically changes. CheckBox and RadioButton views are
CompundButtons as well.

https://kotlinlang.org/docs/java-interop.html#notation-for-platform-types

© 2022 Marko Katziv, All rights reserved.

Specify the returned View type and infer to variable

And as of Android 8.0:

Be Careful!

The above line will compile, but also crash the app with the following exception:

This is an easy error to fix, but the point is
that this syntax is prone to errors. Even
though the type is declared, we might
accidently use the wrong view. It is possible
because the findViewById method returns a
generic type that extends the View class.

WI�[SRƅX�FI�[EVRIH�EFSYX�MX during compilation and the app may not crash at launch. You
will find out about it when you try to invoke a field or a method that belongs to the view
we initially wanted. The app will either crash or have some unexpected behavior. So make
sure you are binding to the correct kind of view.

Interacting With Views

After getting a reference to the view, we can access its public fields and methods.

Note: Keeping lots of references for views in the code can be pretty messy and tedious.
These days there is a much better approach for keeping track of all the views inside a
layout Ɓ ViewBinding. This approach makes sure you have the proper view type, without
explicitly specifying it. In addition��8LMW�ETTVSEGL�QEOIW�WYVI�XLI�VIJIVIRGI�VIGIMZIH�MWRƅX�
nullable. More on that subject later on.

AppcompatActivity ʹ findViewByID() source code.

© 2022 Marko Katziv, All rights reserved.

Changing elements on screen is easy as that:

Its recommended to explore the different attributes. Just remember that programmatic
changes override any settings you have in the XML files.

,IVIƅW�ERSXLIV�I\EQTPI�[LIVI�the ImageView is resized and its layout_gravity set to
START

-R�SVHIV�XS�VIWM^I�XLI�MQEKI��[I�RIIH�XS�EGGIWW�MXƅW�PE]SYX�
attributes, and provide the parent with the new
parameters.

In this example, The ImageView is inside a LinearLayout,
so LinearLayout.LayoutParams() was used. There are more subclasses of ViewGroup
that has their own LayoutParams such as RelativeLayout, TableLayout, TableRow,
RadioGroup, and more. Use the one that corresponds to your parent layout.

After a view is changed, it needs to be redrawn to reflect the changes. If a property such
as a background or text is changed, than only the invalidate() method should be called to
signal that the layout needs to update itself. But if something that affects the size will
change, than requestLayout() should be called as well. requestLayout() will trigger the

© 2022 Marko Katziv, All rights reserved.

ĂŶĚƌŽŝĚ͗ŝŶƉƵƚdǇƉĞс͟textPassword͟ ĂŶĚƌŽŝĚ͗ŝŶƉƵƚdǇƉĞс͟number͟ Default input type

onMeasure() and onLayout() methods not only for the view itself, but also for its parent -
all the way up the view tree.

When changing layout parameters, [I�HSRƅX�RIIH�XS�GEPP�XLIWI�JYRGXMSRW�SYVselves.
It is already present in the setLayoutParams() function.

Clicking on the EditText will pop up the keyboard. Different keyboards are suited for
different tasks.

User Touch Interaction

Touch recognition and handling are critical parts of developing user interaction.
Handling different types of clicks, drags, swipes etc. are basic ways for the user to
interact with the app. An app can be controlled by voice and motion as well, but we will
focus on physical touch interactions.

In the core of all��UI gestures are��the touch events. the View.onTouchListener interface
PIXW� YW� VIKMWXIV� XS� E� ZMI[ƅW� XSYGL� IZIRXW� ERH� MRXIVGITX� XLIQ�� 8LMW� MRXIVJEGI� LEW� SRI�
abstract method Ɓ onTouch. The onTouch method has access to the MotionEvent data,
which describes the type of touch action that happened by using constants, and
coordinates on the screen.

Note: The dimension values passed in the LayoutParams() are Integers, not dp��-XƅW�XLI�
HIZIPSTIVƅW�NSF�XS�GSRZIVX�MX�XS�HT�YRMXW in order to display the view correctly.

https://developer.android.com/reference/android/view/MotionEvent.html

© 2022 Marko Katziv, All rights reserved.

A simple gesture is composed of the following ACTIONS:

1. DOWN Ɓ The user pressed down on the screen.
2. MOVE Ɓ The user moved around during a press gesture (between ACTION_UP and

ACTION_DOWN).
3. UP Ɓ (or CANCEL) A press gesture has finished. The user released the screen.

The full collection of constants can be found here.

The touch event is first passed to the Activity. It is then passed
XS��ƈViewGroup AƉ�onInterceptTouchEvent(), to let it have a
chance to consume the event by returning true.

-J�XLI�IZIRX�[EWRƅX�GSRWYQIH��MXW�TEWWIH�XS�ƈViewGroup BƉ��
which also has an opportunity to intercept and consume the
event. It is then passed to the Button (the actual view that was
pressed) and its onTouchEvent() is triggered.

Every touch event may be propagated through the view
tree. Every view that contains the touched view, will
have an opportunity to respond to the touch event.

The first to be notified about the touch event is the
Activity. After that, The different view groups are
notified, going all the way to the specific view that was
touched.

After everyone is notified, everyone is given a chance to
handle the event.

The first one to handle the event (if not intercepted), is
the specific view that was touched Ɓ the view on top.
The last one to have a chance to handle it is the activity.
So the activity is the first to know about the touch event,
and the last to handle it.

If some ViewGroup needs to handle the touch event
immeditaley and not give anyone else a chance to��
handle it, then we can simply return true in its
onInterceptTouchEvent() method (or for the activity,
override dispatchTouchEvent()).

Note: The dispatcher is responsible for identifying which methods to invoke next. The
dispatcher triggers the onInterceptTouchEvent() of a ViewGroup, and then it triggers the
dispatchTouchEvent()

https://developer.android.com/reference/android/view/MotionEvent.html#summary

© 2022 Marko Katziv, All rights reserved.

Event Handling

In order to respond to events such as clicks, swipe gestures, text inputs etc. we need a
way to know about them. The approach is to capture the events from the specific view
that was interacted with, by implementing an interface that registers for the viewƅW�GPMGO�
event. This way we can intercept it and add our own logic.

The View class provides the tools to do that. The View class contains a collection of
interfaces that allow us to define our callback. A callback is a function that will execute
once some other function has finished. So for example, if we want to respond to a
button click, we need to provide an implementation of the OnClickListener interface to
the View.setOnClickListener method. The following code shows an Anonymous
implementation of the OnClickListener interface:

You can also define a class to implement the OnClickListener interface. In the code below,
the MainActivity class is responsible for implementing the onClick method. 2SXMGI�ƈthisƉ�
has been passed as the listener for the button.

The OnClickListener interface contains one abstract method Ɓ onClick(v: View). Because
XLIVIƅW�E�Single Abstract Method in that interface, we can use a SAM interface. Instead of
implementing the interface manually, we can use a lambda expressions that matches the
signature of the interface implementation:

Note: a lambda expression is a block of code that can be passed as a parameter to other
functions. These type of functions are called Higher-order functions.

https://developer.android.com/reference/android/view/View.OnClickListener
https://developer.android.com/reference/android/view/View#setOnClickListener(android.view.View.OnClickListener)
https://kotlinlang.org/docs/fun-interfaces.html

© 2022 Marko Katziv, All rights reserved.

Inside the callback, we are provided with the view that was clicked, and can access it by
using the it keyword. For example, this code will GLERKI�XLI�GSPSV�SJ�XLI�FYXXSR�[LIR�MXƅW�
clicked:

There are a lot of different Listeners. Some are shared by all views, like the
View.OnClickListener interface, and some are designed for different types of views to
handle inputs and events.

© 2022 Marko Katziv, All rights reserved.

Resources

Besides the code of the app, there are additional files that hold different resources like
images, colors, strings, animations, navigation, ERH� XLI� PE]SYXW� [IƅZI� WIIR. These
resources are kept and maintained in separate directories, under the res directory. This
way nothing is hardcoded into the code, and we can provide alternative resources for
specific devices and configurations.

;IƅPP�WXEVX�F]�KSMRK�SZIV�WSQI�GSQQSR�VIWSYVGIW�

Drawable resources

A drawable resource is a general concept for a graphic that can be drawn to the screen.
We can create new drawable resources by adding them into the drawable package inside
the res folder of the project. ;I�GER�XLIR�PSEH�XLIWI�JMPIW�YWMRK�XLI�ZMI[ƅW�EXXVMFutes. For
example, The ImageView and ImageButton views have a src attributes which can take a
drawable as a value and display it.

We can also use drawables as backgrounds and create different shapes with different
behaviors in order to change the appearance and feel of a view.

There are several different types of drawable, some of the most commons are:

Bitmap File

We can load images (.jpg, .png, .gif) into views that
support them such as an ImageView, ImageButton and
more. To add an image to your project, simply copy it into
the drawable package inside the res folder of the project.

XML File

To create, right click on the drawable package and select New -> Drawable Resource
File. This will open up a dialog, asking for a name for the file.

The XML drawable allows us to define shapes with
specific styles and then apply them on a view.
Furthermore, we can combine drawables into a
StateListDrawable - a type that references different
bitmap files for different states. The root element of
this type of drawable is the selector, where each state
drawable is defined in a nested <item> element.

Another use case is defining a shape that will act as a background for a view:

StateListDrawable XML file example

rounded_bg.xml �ƵƚƚŽŶ�ǀŝĞǁ�ǁŝƚŚ�͞ƌŽƵŶĚͺďŐ͟�ĂƐ�
background

https://developer.android.com/reference/android/graphics/drawable/StateListDrawable

© 2022 Marko Katziv, All rights reserved.

Vector drawable

a graphic defined in an XML. This type of drawable has a major advantage Ɓ image
scalability. Meaning, the same file is resized for different screen densities without loss of
quality. To create a Vector drawable, Right click on the drawable package, choose New ->
Vector Asset. You can load .SVG files or choose a Clip Art:

Strings Resource

One of the most common resource is the string resources, that enables us display
different languages based on the device configuration. You can access them by using the
IDs you gave them. A String resource provides text strings for the application with optional
formatting:

x String Ɓ A single string. Can be referenced from the application with parameter, or
from other resource files.

x String Array Ɓ A single array of strings.
x Quantity Strings Ɓ Different languages have different grammar for quantity.

Android provides methods to select the appropriate strings.

Optional research: The MaterialButton is a part of Material Design, which is highly practiced. It
inherits from AppCompundButton and has more attributes such as cornerRadius (previously this
attribute was available through a drawable).

During the course, It is recommended to get familiar with Material Design and work with its
different Views and ViewGroups.

https://material.io/develop/android

© 2022 Marko Katziv, All rights reserved.

This type of resource is managed and stored in a way that lets the Android system
display the text in the correct language EGGSVHMRK�XS�XLI�HIZMGIƅW�GYVVIRX�GSRJMKYVEXMSRW�

To add a new string resource, simply create a new entry in the strings.xml file, inside the
<resource> tag:

The strings.xml file is created automatically when you start a project, but if you need to
provide translated strings, then you need to create a new values directory, and give it the
proper name for the translation.

This can be achieved by switching to Project view in the Project tab, and creating a new
package named values-{language code}. For example, values-iw would be the package
name used for Hebrew strings. The name of the resource needs to be identical to the
default name and the iw suffix is one of the language codes that can be provided as a
language qualifier (explained later on).

;I�HSRƅX�RIIH�XS�HS�MX�QERYEPP]��Android Studio provides an editor for strings. In the XML
file click on at the top right side. Through there we can add more strings,
and provide additional translations.

The world Icon shows a list of all supported languages

© 2022 Marko Katziv, All rights reserved.

Animation resources

Animations are used to give the UI a rich look and feel. Animations in android apps can be
performed through XML or Kotlin code. Either way, we are using properties to transform
a view from one visual state to another.

In the Drawable section of the tutorial, we saw how we can display different drawables
for a specific state. This is not the same thing. Animations are based on frames where
the properties change when the frame changes, and we only define the starting stage
and the completion stag. We can also define the time of the animation, and make the
animation loop itself indefinitely.

To apply Animations to our application via XML, we need to
make a folder called anim under the res folder to store
animation files of the application.

The slide_in folder inside the anim folder contains files with
the same name, but Android will load the correct one based on
the device current direction: Right-to-Left or Left-to-Right. This is
part of Resource Localization, which is explained later on.

Below are some XML animations examples:

Fade in animation. By using the alpha property, we can
create a fade in animation. Start value is 0.1 and end value
is 1. We can make it a fade out animation simply by
converting the values. Slide in animation. By using the translate tag, we can animate a view

from one place on the screen to another. Left and right animations are
done on the X axis. Up and down animations are done on the Y axis.

Rotate animation. This animation file will make the view rotate
on its pivot (x and y coordinates of the pivot are 50% so the
center of rotation will be the center of the view). The animation
will repeat itself indefintly because repeatCount is using the
͞ŝŶĨŝŶŝƚĞ͟�ĐŽŶƐƚĂŶƚ.

© 2022 Marko Katziv, All rights reserved.

After creating the animation resource, we need to load it inside our code, and apply it on
the target view:

To apply Animations directly to a view via code, we can use an ObjectAnimator.

ObjectAnimator is a Subclass of ValueAnimator, which allows us to set a target object
and apply animations to it by changing the actual properties of the object:

There are more types of animations and each one has properties and parameters that
can be used to tweak and optimize the animation process. It is recommended to
experience with the different animation libraries.

We can also set listeners for the animations and implement logic for when it starts and
ends. By doing so we can create a chain of animation that will play animations one after
another. Android also provides functions that lets us define more easily the way
animations are played.

The code above is using Animators and an AnimatorSet, to play animations either
sequentially or all at once.

ItƅW�XLI�WQEPP�HIXEMPW�XLI�QEOI�E�YWIV�I\TIVMIRGI�Ɓ a great one!

https://developer.android.com/reference/android/animation/ObjectAnimator
https://developer.android.com/reference/android/animation/ValueAnimator

© 2022 Marko Katziv, All rights reserved.

Resource Localization

Android studio lets us define different qualifiers when creating a resource. For example,
we can create a new string.xml using the Locale qualifier:

In general, qualifiers define the type of resource to use at runtime. Android detects the
current device configuration and loads the appropriate resource. When creating a new
resource we are given a list of qualifiers to choose and configure. They are all self-
explanatory, and easy to use.

So instead of opening a new package with the proper suffix, we can use a qualifier, and
Android Studio will generate the appropriate files.

Note: You can add multiple qualifiers to one directory name, by separating each qualifier
with a dash. If you use multiple qualifiers for a resource directory, you must add them to
the directory name in the order they are listed HERE.

https://developer.android.com/guide/topics/resources/providing-resources#AlternativeResources

© 2022 Marko Katziv, All rights reserved.

The example below shows one app that loads different drawables, views and view groups
based on the device configuration.

In the example above, Android uses the appropriate resources based on location,
language, screen size, orientation and more.

If you choose to let the app have a Landscape mode, You might need to provide a
different layout. Your Kotlin code will be exactly the same, but Android will load a
different XML layout resource, based on the best match for the device configurations.

https://developer.android.com/reference/androidx/browser/trusted/ScreenOrientation#LANDSCAPE

© 2022 Marko Katziv, All rights reserved.

Dialogs

There are many times in the application that we need to ask the user for a decision or
show critical information. A highly practiced way to do that is by using dialogs. A dialog
is a window that appears in front of the appƅW content.

WI�RIIH�XLI�YWIVƅW full attention, so dialogs disable all app functionality when they
appear, and remain on the screen until confirmed, dismissed, or a required action has
been taken. Dialogs are intentionally interruptive and should be used to display critical
information that requires the user to acknowledge it, and sometimes provide an input.

The Dialog class is the base class for dialogs, and it has subclasses with pre-defined UI
and functionality.

AlertDialog

This type of dialog has a pre-defined UI that can show a title, up to three buttons and a
list of selectable items. We can also use custom layout, instead of the pre-defined
layout. To create an AlertDialog we need to use its Builder class:
AlertDialog.Builder.

;I�GERƅX�GVIEXI�ER�AlertDialog directly, because its constructors are protected. Instead,
we are given a builder to configure the content to show, and callbacks to user
interactions.

The builder has public methods to configure the dialog:

The create() method returns an AlertDialog instance that has a show() method.

A simple dialog that cannot be canceled, unless the user
clicks on a button.

https://developer.android.com/reference/android/app/Dialog

© 2022 Marko Katziv, All rights reserved.

8LIVIƅW�EPWS�XLI�DatePickerDialogs Ɓ a simple dialog containing a DatePicker:

We can also make our own layout and set it to be the layout of the dialog:

It is common to create a custom dialog,
especially if it has more complex logic and
views. In that case you should use a
DialogFragment (will be discussed later in the
course).

1.

2.

3.

Android building blocks - Part 1
Activities, Intents, Permissions, Lifecycle and
Persistent Storage

Download the full app created in this guide:
https://drive.google.com/file/d/1leLw1Fo7aZfvgL-r2fjwEA_frEfvXS_h/view?
usp=sharing

Each Android App consist of four components:

Activity - this is the main android component. Each Activity
represents a full screen. Nowadays we us the AndroidX
AppCompatActivity which includes more advance features over the
basic Activity which it inherits from. If we go deeper into the
inheritance tree you will see that Activity also inherits from Context.
The Context is an abstract class whose implementation is provided by
the Android system when it is creating the Activity. Yes, the system
creates the Activity and not us. The context allows us to interact with
the system, it allows access to application level resources and classes.
We will need it for each Android API class generation including
creating other activities and other app components.

Service - Service is an app component designed to preform non-UI
related operations. Like the Activity the Service also inherits from
Context and it allows him to fully interact with the android system and
so massive operations if needed. The fact that the Service doesn’t
have UI is sometimes an advantage - think about playing music from
the background when the user is out of our app UI and wants the
music to continue even when he navigates to other apps. An android
App has two states - foreground and idle. Once the app has a
foreground activity or a foreground service it considered to be
foreground and has unlimited working power. After they move to the
background the app will move to idle state and all of its other service
and background activities will be killed by the system.

Broadcast Receivers - Broadcast are transmissions that the Android
system can send when events occur. For example when connecting an
external device, when connecting to a bluetooth or to wi-fi, when a call
or sms arrives or sent, when the battery changes, when the boot
completes, when connecting to a power source, when turning on
airplane mode or even when turning the screen on and off. In short for
every external Android OS event sends a special broadcast. The
Broast Receiver is a component that we can register to receive these

3.

4.

1.

broadcasts and do something with them. For example, when we detect
that the boot completed we can start a service which let the user
know the current weather or checks messages on our server or much
more. The Broadcast Receiver doesn’t inherit from the Context but
receive a limited one by the system when the broadcast it was
registered to is sent. This limited context doesn’t allow the receiver to
do any long term operations but instead it will be finished by the
system after 5 seconds if it didn’t finish before.

Content Provider - A Content provider is an app comment designed
to provide data to other apps. All of the internal system database are
arranged in a Sqlite databases and through the Content Resolver the
system provides an interface for us to access their stored data like the
address book, the content of the SD card, the calendar and other data
stored locally on the phone.

Launching the app - order of events:

Everything starts in the Android Manifest xml file. In that file we set
the app name, icon and other initial settings, the required device
features and needed permissions but the most important thing, we
declare the existence of all of our apps components and their
capabilities. When the user installs our app the Android system
creates a single instance from each component defined in the
Manifest in the JVM Class Loader and uses this instance when it needs
to create the component at runtime. It can do so either when the
component is asked for explicitly by its name or when his declared
capability is needed. This is the situation when the app launches:
When the system detects a press on our app icon it sends the MAIN
action to our package - the Activity which is registered to that action
will be automatically created by the system. Please notice the
exported attribute set to “true”. This means that this component can
be created by the system when its registered action occur.

2.

3.

When The Android OS creates an instance of the designated Activity it
Automatically calls its onCreate() Lifecycle event function. By
overriding this function we get our first entry point to the activity
creation. Please note that after the super() call you can see the
setContentView() function - this function receives the id of the initial
xml layout file and inflate (inflation is creating objects from the static
xml list) all of its views and subviews and populate them on the
screen.

After the initial layout has been created we can do additional

3.
customizations like attaching listeners to buttons, play background
music reading data from internal or external storage and populate a
list with it and much more.

But since we use view binding we add this line to the app Gradle

And our onCreate will look like this:

Intents

In the Android OS Intents is all we have :)
Intent are the way to interact with components, they can create them, pass
information to them and more. Note the activities usually doesn’t have
constructors overloading, this is because we don’t use constructors calls to
create them but rather pass an Intent to the system and let her create the
implement the Context for them. Our first entry point to their creation is the

lifecycle event function onCreate. When the system receives an Intent she is
reading our intentions from it. Our intentions can be either Explicit where we
are mentioning our desired Component by it’s name or Implicit where we
mention our desired Action string and the system finds the component for us
according to what they declare - usually in the Manifest file. If more the one
Component can answer that Action the system lets the user pick one and
define it as default. The Implicit launch is the case in the app launch - the
MainActivity declare himself to answer the action MAIN in the manifest. When
the user installs the app the system creates the activity in the class loader it
maps it to that action. When later the user press the icon, the system sends an
Implicit intent with Main action and because he can answer it and it creates
him.

Explicit Intent

So If we want to use the Explicit intent and start our own LoginActivity we first
must create it. We have the short way: File->New->Activity->Empty Activity
and give the Kotlin and the XML files a name and that’s it. by doing this
Android studio does allot for us: First it creates a new Kotlin class that extend
AppCompatActivity and override the onCreate, then it creates a template xml
file and inflate it in the previously overriden onCreate function. It also add the
Activity to the Manifest XML file. So basically it is quite nice.

Please note that the default value this activity has for the exported attribute in
the Manifest file is false, meaning this activity can be created only explicitly by
mentioning of his name, He doesn’t have any <intent filter> and won’t be
initiated by an ACTION like the MainActivity.

So to initiate it explicitly! create an Intent and use the context’s startActivity()
function:

Passing Data
what about the name and other information it needs?
Since we don’t have a constructor we use the Intent to pass data upon creation.
Each Intent contains a Bundle in his extra field. A Bundle is basically an
HashMap where the key is a String and the value can be String, Int, Double,
Float, array of them and any object that implements either the Java’s

Serializable interface or its Android Parcelable implementation. We add this
extras to the intent using it’s putExtra() function and when the system creates
the new activity it saves this Intent as his property and we use and the
getExtra() with the same key:

In the calling Activity:

And in the newly created Activity:

And that’s it.

Tasks & Back Stack

Activities in the system are managed as an activity stack. When a new activity
is started, it is placed on the top of the stack and becomes the running activity
-- the previous activity always remains below it in the stack, and will not come
to the foreground again until the new activity exits.

Your Activity is placed on top of your Task. By pressing the back button you kill
this activity (like calling finish() from within the activity) and pops it from your
back stack. By pressing the home button you take all of your Activity’s Task and
put them all in the background (after a while the OS will kill them if you won’t
return to them) and you can bring the task to the front along with all go the
activities in it.

One thing you must understand regarding the Activity task is that each intent is
creating a new activity instance. If, for example, from activity A you open B and
then A again a new instance of activity A will be created. If you want to bring
and existing Activity instance forward you need to change the Activity’s
launchMode attribute in this the Manifest file from standard to: singleTop -
meaning if the activity already present in the top of the stack (it is in the front)
it won’t be recreated, singleTask - the system creates a new task just for the

activity but if an there is already an instance of that activity somewhere in that
task the system bring him forward and routes the intent to it. Because it is not
created, the already existing instance still holds the old intent in its Intent
property. If you want to update this field with the new Intent, you need to
override the onNewIntent(intent: Intent) function. And the last one
singleInstance which is the same as before except that the system doesn’t
launch any other activities into the new task created for that activity (in case
we wasn’t already present).

For further reading and some nice drawings:
https://developer.android.com/guide/components/activities/tasks-and-back-
stack

Implicit Intent

Now let’s say we want to open an address on a Map, send an email, dial a
number, open a browser to a specific site, take a photo, record a video or any
other action which we want to preform but don’t really care who will perform
it. For this we have the Implicit Intent. In the Implicit Intent we set the Action
String(it can be either one of the system fixed actions or our own custom one if
you want - not common) and according to all of the installed d components
and their declared abilities - declared with <intent-filter> - will be populated
for the user to choose from. Please note that when using the Action string we
usually set the extra data with the setData(uri) function. This functions
accepts a URI that corresponds with the Action. For example when using
ACTION_DIAL or ACTION_CALL the data is a phone number URI (starts with
tel:):

Run the code. A Dialer with the phone number appears. Nice.
Try changing the ACTION_DIAL to ACTION_CALL. What happens?
Yes, the app crashed! this is because the later action try to actually preform the
call while the former just showed a dialer and allowed the user to initiate the
call (the first time the system dialer ran it also asked for the permission).

Before moving forward to the permissions please read here a a list of common
intent action and their corresponding intent filters - IMPORTANT

https://developer.android.com/guide/components/intents-common

Permissions

Runtime vs install time permissions

First we must understand that before android 6.0 (marshmallow - api version
23) all permission were install time, meaning that all we had to do is to add the
required permission to the Manifest file like this:

Toady we still need to do it, but for some permissions this is not enough.

In the old way, when the user installed the app he was given two options either
to install the app and accept all the permissions without the ability to accept
one and deny the other, to revoke them at a later time or even to understand
exactly when they are using them or simply not installing the app.

Today for some permissions this is still the case, these permissions are mostly
what I call background use permission (like getting boot and bluetooth or wifi
connections that happen usually when we don’t have UI present), and what
Android defines as not dangerous - but normal permission. you can find the
full list of them here: https://stackoverflow.com/a/36937109/2826409 (normal
means you should only declare in Manifest file even after Android 6 and
dangerous is what we are going to discuss here).

But for the most common permissions like calling, location, recording, reading
contacts, and more. We must switch to the Runtime permission mechanism
and beside writing them in the Manifest like before we must also present a Pop
up window at runtime and specifically ask for them, just like in the iOS model -
meaning we have to specifically ask for them when we need them and the user
must grant us each requested permission. He can later revoke his approval and
he can allow one while denying the other. A good practice is to ask for the
permission only when we need it.

And this is how we do it:
First let’s move the call execution to a separate function.

Now as a part of the new Launcher API that will be discussed later on we need
to create the Permission request Launcher with the basic RequestPermission or
RequestMultiplePermission Contract and provide a callback which upon
approval will initiate the call:

When the user presses the call button we check if we already got the
permission and if not we initiate the previously created launcher supplying it
with the permission it needs to ask for. The system remembers the user
approval but he can always revoke it and that is why before preforming the
operation we must always check if we have the permission.
(please note that we use the AppCompat functions in order to support Android
version earlier the 6.0)

Please note: before asking for the permission Android encourage you to check
whether you should show A UI explaining why you need this permission. You
can check with the system whether you need to show the rational with the
shouldShowRequestPermissionRationale() function if it returns true show a
dialog explains why you need it if not just go ahead and ask for it.
shouldShowRequestPermissionRationale method returns false only if the user
selected Never ask again or device policy prohibits the app from having that
permission

●

●

●

●

Activity LifeCycle

An activity has essentially four states:
If an activity in the foreground of the screen (at the top of the stack), it
is active or running.
If an activity has lost focus but is still visible (that is, a new non-full-
sized window has a focus and it it placed on top of your activity), it is
paused. A paused activity is completely alive (it maintains all state
and member information and remains attached to the window
manager), but can’t receive interactions from the user.
If an activity is completely obscured visually by another activity, it is
stopped. It still retains all state and member information, however, it is
no longer visible to the user so its window is hidden and it will often be
killed by the system when memory is needed elsewhere.
If an activity is paused or stopped, the system can drop the activity
from memory by either asking it to finish, or simply killing its process.
When it is displayed again to the user, it must be completely restarted
and restored to its previous state.

The following diagram from the Android Developers shows the important state
paths of an Activity. The square rectangles represent callback methods you can
implement to perform operations when the Activity moves between states. The
colored ovals are major states the Activity can be in.

●

●

●

(Photo from the Android Developers
https://developer.android.com/guide/components/activities/activity-lifecycle)

There are three key loops you may be interested in monitoring within your
activity:

The entire lifetime of an activity happens between the first call to
onCreate(Bundle) through to a single final call to onDestroy().
The visible lifetime of an activity happens between a call to onStart()
until a corresponding call to onStop(). During this time the user can
see the activity on-screen, though it may not be in the foreground and
interacting with the user. Between these two methods you can
maintain resources that are needed to show the activity to the user.
The foreground lifetime of an activity happens between a call to

●

●

●

onResume() until a corresponding call to onPause(). During this time
the activity is in front of all other activities and interacting with the
user. An activity can frequently go between the resumed and paused
states. For example when a dialog indicating a new message arrived, a
call received, or any other window that is in the foreground even if it is
not fully hides out activity.

In other words: When another window hide even a part of our activity the
function onPause is called - This function is the best place to save user info to
persistent storage.
Note: When overriding each function it is very important to call super first.

Lets examine a situation where we move from activity A to activity B what
do think the order of events should be? Think about it.

The key is to remember that while onPause is called on the first lost of
foreground, onStop will only get called when our views are no longer visible,
and that will happen only when activity B has the foreground. This is why the
order of events will be:
A - onPause()
B - onCreate()
B - onStart()
B - onResume()
A - onStop()

This is also a good reason to save the data on the onPause - if we need it in
one of the new activity lifecycle events.

Persistent storage

As we have seen, when the android system calls the onDestroy() function all
the app memory is deallocated and its resources are freed. So if we need to
save some information across the user sessions we can use the lifecycle events
to persist data across sessions. Android provides several options for you to
save and persist your application data. The solution you choose depends on
your specific needs:

Shared Preferences - Store private primitive data in key-value pairs.
As its name suggest this is mainly useful in saving simple user
preferences like if it is the first run our not, whether he muted the
music, whether he want green or blue background color, his already
typed e-mail in an edit text and other basic user user information.
Internal Storage - Store private data on the device memory, this
storage is designed to be the app “sandbox”, its private to your app
and will be deleted when the user uninstall your app. It is not limited in
size but the user can clear it from the settings. The shared

●

●

●

●

preferences mentioned above are saved here as well as the ROOM
DATABASE we will learn later on, but we can also write to this area
directly using Java’s streams.
External Storage - Store public data on the shared external storage
this information can be shared with other apps and can be saved even
after your app is deleted. The External storage called “external”
because you can share it with others, it is not external to the device
but to the app. It is divided to two sections: The first is for use by our
app. Like said it can be shared with others. It will be deleted when the
user uninstall the app and writing to it doesn’t requires permissions.
The second is the external shared by all apps, writing and reading
from it requires permissions and data saved there will not be deleted
when the user uninstall our app.

shared preference
The SharedPreferences class provides you the easiest way of saving data to the
device memory, the data will be saved while you app is installed on the device.
We save all the information with the key-value bundle(hash Table) we have seen
before - but with less options - only java primitives, String and a set of Strings.

To get a SharedPreferences object for your application, use one of two
methods:

getSharedPreferences() - Use this if you need multiple preferences
files identified by name, which you specify with the first parameter
(use a constant). Use this method to get a preference file to be used
across all activities, meaning a file that can be accessed from
anywhere in your app.
getPreferences() - Use this if you need only one preferences file for
your Activity. Because this will be the only preferences file for your
Activity, you don't need to supply a name.

Here is an example of using the first option in the onPause lifecycle event

Please note that writing to the file system can be either synchronous or a-
synchronous. If you use the apply() function on the editor the writing is done
later on but if you use the commit() function the system holds everything and
writes the data to the filesystem now.

When we want to read data from the shared preferences we use the same file
name and keys:

Note the MODE_PRIVATE flag which is our only option - the file is only readable
by our app - the other modes WORD_READABLE and WORLD_WRITABLE
considered to be dangerous and as of API 17 are deprecated (when google
moved to SELinux).

Android Building block - Part 2

Download the full App created in this guide
https://drive.google.com/file/d/1hiATTqbz-KEhcq20dfqWNX4ZEdqG9p3P/view?
usp=sharing

Download the Animations XML Files
https://drive.google.com/file/d/1lrXBf5dJL7Lu7O3bNNUyHqMBfvYFJLT5/view?
usp=sharing

Single activity architecture

From the Google I/O 2018:

“Today we are introducing the Navigation component as a framework for
structuring your in-app UI, with a focus on making a single-Activity app the
preferred architecture”

Yes, although we can create as many Activities as we want, this not the
recommended architecture according to Google. Activity takes the whole
screen, when creating it the system has to create a new context and switch to
it, also it has to create a new window for the Activity’s root view and sometimes
this can take a while especially if we don’t need all of this work.

A long time ago Google introduced a new OS (Android 3.0) just for tablets. The
OS included Fragments as her main key feature. Fragments gave us the ability
to split our whole screen into a bunch of individual units the can work together
and still each one is independent, it has its own Lifecycle events (that
corresponds to the hosting Activity lifecycle). Each Fragment has its own Kotlin
and XML files and the most important thing is that creating it is much quicker
then creating activity since we don’t create a new context or an new window for
its root view but instead we just add its root view to a specific view container in
the Activity layout and it becomes the Fragment host.

Because it was a later addition the Fragments API was added both to the v4
support library (today replaced by the AndroidX) to be used in lower versions of
Android and to the android.app package - based on the idea that when enough
time will pass we will use only the android.app and won’t be needing the
support library anymore. But sometimes realty overcomes and today the
android.app Fragments are deprecated and we should only use the ones from
the AndroidX support library.

Let’s go back to the Google I/O, in 2018 they introduced Navigation as a part of
the Jetpack tools for clean and reliable android apps. The Navigation
component, like the iOS storyboard allows us to create and design in a nice and
easy graphical interface all of our app flow in terms of screens and transitions.
You can create and see in one place all of your app screens and the flow

between them and it’s all done with, what else, Fragments! In fact the only work
the Activity is doing is hosting the Fragments and sometimes interacting with
app menus.

Fragments

Like said before a fragment has a few important key features:
It has its own layout and Kotlin file. This way he his responsible for is own ui and
logic. Besides the fact that it makes our code more structural it makes the
fragment an individual unit that can be taken to another project with ease. So
go ahead and create a new Empty Activity project with an Activity that will use
solely asa a container. This will be an ongoing project so call it
ArchitectureProject.

In it create a new XML file and add a Floating Action Button in the buttom - end
of the parent. Your xml should look like this:

If you’re there already, create our second screen, it will use for adding an item
that will be shown later on in a list in that our screen so just add the item input
fields in the next screen. Each Item will have a title, a description and an image.
So go ahead and create your UI, don’t forget the finish button. This is the
general layout of the xml file.

Before we need to create our Fragments, let’s understand it’s lifecycle:

The lifecycle of the Activity in which the fragment resides directly affects the
lifecycle of the Fragment. Each lifecycle callback of the activity results in a
similar callback for each hosted Fragment. For example, when the activity
receives onPause(), each fragment in the activity receives onPause().

Fragments have a few extra lifecycle callbacks that handle unique interaction
with the activity in order to perform actions such as build and destroy the
fragment's UI. These additional callback methods are:

onAttach() - Called when the fragment has been associated with the activity
(the Activity is passed in here by the OS). If the Fragment needs the Context
after this function he can retrieve it using the getActivity or requiredActivity

functions.
onCreateView() -Called to create the view hierarchy associated with the
fragment.
onViewCreated() - Called immediately after onCreateView. This gives
subclasses a chance to initialize themselves once they know their view
hierarchy has been completely created. The views aren’t attached to their
parents yet.
onActivityCreated() -Called when the activity's onCreate() method has
returned.
onDestroyView() - Called when the view hierarchy associated with the fragment
is being removed.
onDetach() - Called when the fragment is being disassociated from the activity.
the getActivity() function here will returned null.

Once the activity reaches the resumed state, you can freely add and remove
fragments to the activity. Thus, only while the activity is in the resumed state
can the lifecycle of a fragment change independently.

More than that the Fragment's Views has a separate Lifecycle that is
managed independently from that of the fragment's Lifecycle.

The fragment views can be destroyed while the fragment itself is alive in the
back stack. The back stack designed to imitate the back pressed activity action
for fragments - meaning when the user presses the back button the last
performed action is popped out. If the action included replacing Fragment A
with B then pressing the back button will pop it out and Fragment B will be
replaced with A that waited in back stack to be popped out (the instance
remained alive while the views weren’t). This is important and has affects on
the view bidding as we will see soon.

●

●

●

●

●

Fragments and the Fragment Manager
After the onCreate() event the fragment is added to the FragmentManager.
The FragmentManager is responsible of attaching fragments to their hosting
activity and detaching them. When these events happen the fragments
onAttach() and onDetach() are called. After onAttach you can call the
FragmentManager’s findFragmentById() function and get the desired
fragment. Besides managing all or our fragments and giving as the ability to
add, remove, replace and retrieve them, the FragmentManger also manages the
back stack we have talked about before.

Like the Activity the Fragment has its own lifecycle and it implements the
Jetpack’s LifecycleOwner interface that allows to retrieve his lifecycle events
using the getLifecycle() method. This function return a Lifecycle object with the
following states:

INITIALIZED
CREATED
STARTED
RESUMED
DESTROYED

But don’t forget that the fragments keeps a separate lifecycle object for its
views in case we need to preform UI related tasks such as start observing data
that will only be shown in a list.

Here are the fragment lifecycle events and its view lifecycle events with their
corresponding callbacks:

We will see more on those Lifecycle states later on when we dive deeper into
Jetpack.
For further reading on the fragment lifecycle please refer to:
https://developer.android.com/guide/fragments/lifecycle

Creating our Fragment Kotlin file
First add the viewBidning feature to you app Gradle file:

Now create your Fragments. Inherit from the AndroidX Fragment class and use
view binding to inflate our views. Because the views has a separate lifecycle
from the fragment itself and it can outlive its views in the back stack, we need
to de-allocate our biding object in the onDestroyView() method.

For this we have to make a nullable binding field, initiate it in the
onCreateView() function where we get the layout inflater and the parent, which
serves as the fragment container, and after inflating the layout we return the
root view. The binding must be assigned null in the onDestroyView which
causes the GC to de-allocate all the views and release the memory even if the
fragment itself is still alive and in this way we can avoid memory leaks. Please
note that because it is nullable we create a non-nullable property for easy
access which we will use in caution.

Note that when we inflated the Activity layout we didn’t supply any parent
because the system create a new window just for it, so it’s not joining any
parent. But here we specify a container since we add its root view to a specific
container resides in the hosting activity.

Before going forward to our Navigation component please add the
tools:Context to each fragment’s xml file and reference the Kotlin in order for

●

●

●

●

the android studio Design to show us our views related to this act fragment.

Adding Navigation for Fragment transactions

Like said before the Fragment Manager is responsible for exchanging and
managing Fragments. Each transition can include adding, removing or replacing
fragments and is called Fragment transaction. In order to imitate the back
button press for fragment as it is with Activity (remove the last added screen) a
special back stack is created and you can add the Transaction to it. When the
user press the back button the last transaction is removed. The fragment can
live in the back stack although it’s views are destroyed like we said.

All of this work used to be done manually but as of Google I/O 2018 we can do
all of this with the Navigation component.
First we need to add the Navigation graph to our resources and the fragments
and their transitions to it. By looking at the graph we will see all of our app
screens and the flow between them. We can design our app flow in a very nice
and friendly GUI interface and we can even add animations.

So first, implement the following steps:
Under the res-> new resource. In the dialog choose type Navigation
and give it a name. This is your Navigation graph.
Enter your newly created Navigation xml file and add your fragments.
The first fragment you will add will be your home fragment(can be
change later on by right clicking on any fragment and setting as home)
If you can’t see the layout in the preview copy the tools from the
activity_main.xml file into your navigation xml file and add tools:layout
to each fragment and reference his xml file (if you added the
tools:context to your root layout of each xml file all should be ok).
In the design add your actions by dragging from one fragment to
another, each arrow added can be executed in our Kotlin code later on
- note the addition the the xml file

In the end it will look like that:

By pressing the floating button we will navigate to the adding screen and by
pressing the finish button we will go back to our items list.

Next we need need to add the NavHost to your activity.
The navigation host is an empty container where destinations are swapped in
and out as a user navigates through your app. When we want to preform our
actions we will get a reference to it and execute them. The Navigation host is a
simple Layout which inherit from the reliable FrameLayout and called
FragmentContainerView. This Fragment container can create our fragments
and execute out fragment transactions. Add it via xml to your root layout -
general activity_main.xml file.

<androidx.fragment.app.FragmentContainerView
 android:id="@+id/nav_host_fragment"
 android:name="androidx.navigation.fragment.NavHostFragment"
 android:layout_width="0dp"
 android:layout_height="0dp"
 app:layout_constraintLeft_toLeftOf="parent"
 app:layout_constraintRight_toRightOf="parent"
 app:layout_constraintTop_toTopOf="parent"
 app:layout_constraintBottom_toBottomOf="parent"
 app:defaultNavHost="true"
 app:navGraph="@navigation/my_nav" />

The defaultNavHost property tells the system to pass the back clicks to this
NavHost so he can pop his back stack.

Optional you can use the “tag” attribute if you want later to reference him using
the Fragment Manager findFragmentByTag().

So now all we have to do is execute the action and pass extra information with
some of them.
To perform these actions we need to get a reference to our Navigation
controller.
We can do this with any child view in the its view hierarchy to by:

Navigation.findNavController(v).navigate([Action id])

Where v is any view in a view tree that its root is the Navigation Controller,
meaning any view from the displayed Fragments.

If you do not have a live view you can also pass the context and a view id:

Navigation.findNavController(this,R.id.text_view).navigate([Action id])

But the best and shortest is With the navigation-fragment-ktx library
(which already added to your Gradle):

From fragment: findNavController().navigate([Action id]);

From activity: findNavController(R.id.text_view).navigate([Action id])

And in our case:

Back stack
Now run the app navigate to the add item screen, press the finish button and
go back to the Home Screen. So far so good.
But press the back button. Strange ah? Not so much. By default each
action(which is a transaction) is added to the back stack, pressing the back
button pop the last action.

You can solve this by pop the back stack with the action. Choose the action In
the navigation and in the pop behavior choose the root navigation container.
This mean that when executing the action all the fragments in the back stack
will get pop up to the very root of the navigation.

Or alternatively you can pop to the home screen but if you do so check the
inclusive check box to also pop the former instance of it from thee (otherwise
you will have to home screens)

Passing data between Fragments
Each Fragment has an Arguments property which is a bundle and is generally
used to pass information to the fragment upon its creation. A common
Fragment factory method will receive the data add it to a bundle and set it as
the Arguments property of the newly created Fragment it returns. That way this

factory function create a new fragment with the data it needs already inside it.
Later on, when we need to get the data it can access its arguments property
the get it. The same is done by the our Navigation Controller, when we wants to
navigate to a specific fragment and pass some data, we create a bundle and
send it with the action to the navigate() function. It will automatically set this
bundle as the Arguments property of the new Fragment.

Let’s pass the item details (not an object and without the photo yet) and show
them in a Toast message, for now. Next stage we will create a dynamic list in
the all items screen and add the object to it.

Let’s create a bundle with the details and call the navigate function with it as a
parameter.

In the newly created fragment that has this bundle in his arguments property
we get the data

RecyclerView & Adapter

A RecyclerView dynamic scrollable list of items. The list is populated
dynamically. It is not loading all the cells in advance, but instead it gets them at
runtime when the user scroll to it. This is why it uses a Recycle bin like its name
suggest. The purpose of the Recycle bin is create a faster scrolling by
minimizing the amount of object allocation. In fact the recycler is only creating
the amount of initial cells shown to the user and maybe one more. Once the
user start scrolling the list the item that is no longer visible is not de-allocated
from the heap but instead moves to the recycle bin and when a new cell with
the same type (same layout and views) as the old one needs to be created it
simply recycle the old one with the new content. This idea is based on the
principle on which the content of the cells is different their views isn’t so we
can simply take an old cell and populate it with the relevant data.

Take a look in the following diagram:

Although what you see here is the old ListView getView() function and the idea
is the same.
The old item moves to recycle bin and when a new cell should enter if it is from
the same type(same layout) as the one in recycle bin the list uses it instead of
creating a new one.

So let’s use this beautiful mechanism in our project:
First add a RecyclerView to the all_items_layout make it take all the parent
space and give it an id

Next design your cell’s layout. With RecyclerView we use CardView. So create a
new xml with the CardView as the root and design your layout:

To achieve this layout add contentPadding and cornerRadius while setting the
cardUseCompatPadding to true in your CardView attributes. This will make
nice separation between the cards. Inside the card add an Horizontal linear
layout with and image and a vertical linear layout with two TextViews. Don’t
forget to give each view an id.

Now add the Item data class

Note the the photo property is nullable since not all items will have a photo(at
least not in the beginning)

Create an ItemManager object declaration that will serve as a Singleton that
holds a list of the items and a functions to add and remove an item to and from
the list. Later on we will move the data to the ViewModel and persist it in the
local storage with Room database.

So add also this object declaration:

Adapter
Now that we have both the cell layout the the Kotlin data class we can create an
Adapter that connects them together and supply populated views to the
recycler.

But First let’s understand the concept of the Adapter. According to the MVC
design pattern the the controller is a mediator unit between the views and the
model in order to separate between the logic and the UI. The MVA (Model View
Adapter) is very similar.

Model-View-Adapter is a variation of the Triad where all communication
between Model and View must flow through the Adapter, instead of interacting
directly as in a Traditional MVC Triad. The Adapter becomes a communication
hub, accepting change notifications from Model objects and UI events from the
View.

This approach might appear excessively strict, but has some advantages: the
communication network is artificially constrained, making it easier to evaluate
and debug. All action happens in the Adapter, and the View can be created
from off-the-shelf widgets without any Model-specific variation which make
him more generic.

MVA is an implementation of the Mediator pattern. Controllers are generally
referred as Adapters or Mediators. The Model and the View do not hold
references to each other, they do not exchange data nor interact directly.

Create the Adapter - add a new Kotlin class and name it ItemAdpter it should
inherit from the RecyclerView.Adapter but first let’s create our View Holder. A
View Holder is like its name suggest a class the holds references to all of our
cell’s views and given the data class it will bind the data to the views. Our View
Holder should inherit from the RecyclerView.ViewHolder receive the binding
object in its constructor and pass the root to his parent. Then given a data
object it will bind the views to their data. So our View Holder should look like
this:

To complete our class definition, define a primary constructor receiving the
Items and inherit from the RecyclerView.Adapter (use our ItemViewHolder for
the generic view holder). To get rid of the not implementing compilation error
press ctrl+I and implement the three abstract functions. Our Adapter should
look like this :

Let’s explain a bit about how the adapter is working:

It responds to the Recycler View requests. First of all the Recycler gets the
amount of items by calling the getItemCount() function and if the amount is
bigger than zero, it asks for them one by one from its Adapter. Now, notice
there are two functions for this: the create function and the bind function. As I
explained before the first cells displayed on the screen (+one more) needs to
be created from scratch, so for them the recycler calls both
onCreateViewHolder supplying himself as the parent and a type (like we said
this is used in case where one recycler cells has more then one layout file), the
function returns the newly created ViewHolder, and with it, the recycler calls
the onBindViewHolder passing the already created empty view holder and the
relevant position, and this function use view holder’s bind function with the
specific Item at the requested position and return cell with the relevant data so
he can Add it to the list and show the user. But as we said before when the user
start scrolling the scrolled out cell moves to the recycle bin and then the
recycler doesn’t have to call the “expensive” onCreateViewHolder but only the
“cheap” and fast onBindViewHolder function. So it’s the recycler choice when
to create the cell or just bind the data according to what it has in its recycle bin.

So out full Adapter code should look like this:

Later we will get back to it and update the image as well as handling view
events, but for now it’s enough.

1.

2.

3.

Connecting the Recycler to the Adapter and setting the Layout Manager
What we need to do now is to connect between the Recycler and the Adapter
but before that we need to set a Layout Manager to the Recycler View.
A Layout manger decides how the cell will be organized. We have three options:

LinearLayoutManager - organizes the cells one after the other like a
scrolling list, it can be either horizontal or vertical.
GridLayoutManager - organizes the cells in a grid or a table where
we must supply number of columns.
StaggeredGridLayoutManager - is the same as before but each
square in the grid can have a different height (like the notes app)

We will use the Linear Manager. So in the onCreateView or onViewCreated in All
Items Fragment we set adapter and the layout manager of the Recycler view we
have added before to the xml file. In the onViewCreated after setting the
layout manager pass the List of items from the ItemManager object to the
Adapter’s constructor and set him is our recycler view’s adapter. So our almost
finished code should look like this:

Before we run the app and see how the magic happens we first need to add
items to the list. So add the new item to the ItemManager object and remove
the bundle from the navigate action. Your code should look like this:

Run your app and test your recycler. It’s working very nicely but be aware of the
fact that the list not saved to the file system.

Receiving events from Recycler
First of all, unlike other Views the Recycler doesn’t have any interface
throughout which it can send us user events.
Having said that, If all you want is dragging and swiping you have a pre-made
Helper you can attach recycler like this:

The getMovementFlags() return the available gestures (swiping and / or
dragging) and to and from which direction.
The onMove() function is called upon dragging event
And the onSwiped() upon swiping. Since it’s all we allow here, we implement
only it and remove the item from the data. But the adapter which also has a
reference to this list should know that its data source has changed and it needs
to notify the recycler to get updated and read the data again. There are few
functions throughout which the adapter can cause the recycler to get updated
one is notifyDataSetChanged() which causes the recycler to read all of the
adapter data all over again but if have a more specific change we can use the
notifyItemRemoved/Inserted/Updated and pass them the exact index of the
update. Besides the fact that it’s more efficient it’s also done with Animation.

Receiving custom events from our Recycler View
This is a bit more tricky. Because when we want get a custom event we need to
attach a listener to the Views, but the only one who has access to these views
is the adapter and if we write the event handing code in the adapter we decide
on one implementation for all and loose our ability to be generic and let the
class using the Adapter decide of its own event handling. Like here where the
fragment is implementing the onSwiped().

We want to create exactly this. We want to separate the event from the event
handling, and let another class decide for itself on how to respond to the event

we are reporting about.

So first decide on the events you want to report about and the info you want to
send with it and create your interface inside the Adapter:

Make the Adapter’s constructor to receive an instance of that Listener (as well
as the list) and make the View Holder class (the one receiving this actual
events) to be an inner class so it can access this callback and invoke its
functions (the functions that will be later implemented in the fragment for
example).

Our View holder should register for these view events and call the event
callback function with the relevant info:

In in the Fragment just implement this functions when you create the Adapter
and show a Toast message:

Last step - add the photo from the gallery
What we want to do is for the user to pick an image from the gallery (later on
we will add also the camera option). This is part of the Start Activity For Result
API which creates a new Activity and returns its result.

Let’s go back the Runtime Permissions, the same mechanism is implemented
here. In fact the runtime permission was just a single use case of the entire
Launchers API mechanism. This mechanism is discussed in details in its own
module. In short the idea behind it is to register a launcher in the activity or

fragment creation and when we need to, launch it - the idea is to make the call
and the result not dependent in each other.

Here we use a different contract then the request permission contract, the
contract will be the OpenDocument() contract in which the launcher receives
an array of strings representing the mime types of the files we want to show to
the user to choose one from. The result is the Uri of the specific file chosen by
the user. Because we launch another component which reads the file storage
and display it to the user for him a choose from, we don’t need to ask for the
reading permission ourself. Instead the activity that actually read the storage
should ask for the permission.

So add the launcher creation to the AddItemFragment and in the callback that
receives the URI of the photo chosen, set this photo in the image view and add
it to the Item instance.
Be aware of the fact that for security reasons this Uri is temporary it is valid
until our activity session will end(until onDestroy()). Because we need to save
it in the file system later on, we need to ask for the OS to make the Uri
persistent. This is done through the Content Resolver component that will be
discussed later on as well as the actual saving of the item in the local DB.

Our Launcher definition will look like this:

Replace the phot null value with the imageUri in the Item constructor call

In the Pick Photo button click launch you launcher and give the “image/*” mime
type which means images of all types

Now we see the photo in the ImageView but not yet in the recycler. To achieve
this we need to go back to our bind function of the View Holder and use the
external Open Source Glide library to read the image from the Uri stored in The

item class into the image view of the cell. The reason we use Glide is besides of
its incredible images caching and auto resizing that greatly improves
performance it is also doing all of its IO work on a background thread
automatically and update the UI on the main thread - we don’t need to worry
about it - it is also done very efficiently.

So add the Glide dependency to the App grade file and sync your project (you
can find the latest in the Glide GitHub)

 implementation 'com.github.bumptech.glide:glide:4.12.0'
 annotationProcessor 'com.github.bumptech.glide:compiler:4.12.0'

And in the bind function use it to load the image and make it nice and round
into the image view:

That’s it our project if finished for now. Later on we will move our data to the
View Model, notify about changes in it with the Live Data and make it persistent
with ROOM database.

APPENDIX - Parcelable and Serializable
If we need to pass the object from the Adding Fragment to the All Items
Fragment we must put it in the bundle and sends it with the navigation. Please
note that we can’t put an object reference in the bundle since it is generally
used to pass data between components(activities for example) and sending
object references between Android components is not possible because by
changing the process, the object references won’t be in the new process, so we
must make our objects Parcelable or Serializable. It means turning them into
streams of bytes and put it in the the Bundle. Serializable is simpler since it
doesn’t require implementing any methods but with more overhead since all the
work is done at runtime and reflection in general cost more in terms of
efficiency so we would rather use Parcelable because its is built for that exact
purpose and is highly optimized for IPC (Inter Process Communication). But
there are allot of functions to add so we rather use the kotlin-parcelize plugin in
the app Gradle file:

This plugin along with the @Parcelize Annotation in the class definition will
cause the compile to generate all the Parcel functions for us

Another option without any plugin or annotations is to implement the
Serializable interface which all of his functions are added in runtime

And that’s it, now we can send it in the Bundle and add it to the list. But the
adapter which also reference this list should know that it’s data source has
changed and it needs to notify the recycler to get updated and read from it the
most relevant data. The are few functions through which the adapter can cause
the recycler to get adapted one is notifyDataSetChanged() which causes the
recycler to read all of the adapter Adam all over again but if have a more
specific change we can use the notifyItemRemoved/Inserted/Updated and
pass them the exact index to refresh the view.

So our code for sending the Item in the Add Item Fragment should look like this:

1.

2.

3.

4.

5.
6.

ViewModel & LiveData

Download the full App created in this guide
https://drive.google.com/file/d/19hr4KqbyGgZvhjkx1M4rBZIZcxzJ5wbm/view?
usp=sharing

Download the Navigation View Model app from this guide
https://drive.google.com/file/d/144foCUlTej6Amnw4M9Zpa1o2dXldePr_/
view?usp=sharing

Steps:
Create a new project use the Empty Activity template

Make sure in your project structure dependencies that the view model
and live data are included as you can see in the photo attached. If not
Search for ViewModel and copy the latest dependencies into your app
Gradle file and sync. Copy also the LiveData dependencies we will
need it later on. Here is s link to https://developer.android.com/
jetpack/androidx/releases/lifecycle#declaring_dependencies

In the Activity layout file select the existing TextView widget and use
the Attributes tool window to change the id property to result_text.
Drag a Number (Decimal) view from the palette and position it above
the existing TextView. With the view selected in the layout refer to the
Attributes tool window and change the id to dollar_text. Drag a Button
widget onto the layout so that it is positioned below the TextView,
double-click on it and to edit the text and change it to read “Convert”.
With the button still selected, change the id property to convert_btn.
Click on the Infer constraints button to add any missing layout
constraints. If you don’t want to bother yourself with ui now, you can
copy the activity_main xml file located in our starter files.
Now add you Kotlin code to preform the conversion and show it in the
result Text View.
When all is done execute your program and check it.
Well done - now please rotate your screen - What Happened??

Our complete code so far should look like this:

Configuration changes
What Happened is that screen orientation changes is a configuration
change(like language, resolution, text size and much more) in order to load the
more specific resources for that configuration the system automatically sends a
kill signal to all of the activities and fragments displayed on the screen and
creates a new instances - when the new instance is created all the specific
resources are loaded by default. That is why all the information is gone.
In our case the data is simple but think of cases where we work with REST API
or with other remote databases - this requires refetching our data again and
again and can affect the user experience.

Old solution
Besides preventing the screen orientation changes in the manifest (by forcing
only one orientation for each activity) or telling the system we want to handle
this specific change ourselves (also in the manifest -
android:configChanges="orientation" for each activity and overriding the
onConfigurationChange methods inside the activities) - This are all ways to
bypass the default system behavior. If we we leave the default system behavior
that kills the activity, we should have overridden the onSaveInstaceState and
onRestoreInstanceState in the activity and pass the information manually with
the outgoing and incoming Bundle.

New Solution MVVM - Model - View - ViewModel

Please look at the attached photo from the android developers:

1.

As you can see a ViewModel is a special class that is aware of our lifecycle and
can outlive our views (Activities and Fragments). Because of this, it can stay
alive during configuration changes. This is the place where we save all of our
data. Meaning the activity and fragments will serve only for UI purposes and
will not hold any data. Instead, they will have a reference to their specific
ViewModel and it will save the data for them and outlives their configuration
changes. Only when the activity onDestroy() is called without onCreate()
immediately after it then the viewModel onCleared() function is called and the
instance holding our data is deallocated.

Our ViewModel is aware of our lifecycle when we pass LifeCycleOwner as us
and with the help of the LiveData it will update us automatically on any change
in it or when our new lifecycle event requires it.

Let’s implement it:
Create a new class and inherit from the ViewModel class. Please note

1.

2.

3.

4.

5.

you can also inherit from the AndroidViewModel in cases where the
Context is needed for example when working with databases.
Now we remove all the data and the data related functions to that
ViewModel: create a var property called result of type Double and
initialize it to 0.0, add a custom setter that receive the value multiply it
by the conversion rate and save the result in the field

Fragments and Activities needs to obtain a reference to the
ViewModel in order to be able to access the model and observe data
changes(later on). A Fragment or Activity maintains references to the
ViewModels on which it relies for data using an instance of
ViewModelProvider class. A ViewModelProvider instance is created via
a call to the ViewModelProviders(owner) method from within the
Fragment or Activity and pass the current Fragment or Activity as the
lifecycle owners. It returns a ViewModelProvider instance. Once the
ViewModelProvider instance has been created, the get() method can
be called on that instance passing through the class of specific
ViewModel that is required - the reflection class file but Use 'java'
property to get Java class corresponding to this Kotlin class. The
provider will then either create a new instance of that ViewModel
class, or return an existing instance.
In the button click set the result field in your viewModel and read the
updated value to the TextView. Please note that you also need to read
it on the onCreate() in case of configuration change (don’t worry, we
will remove all of this when we use LiveData).
Run the app and rotate the screen - The amount saved in the view
model and the activity is reading it in any new instance created!

Our complete code should look like this:

Please Note you can also use the KTX extensions to initialize the ViewModel
lazy.
Just add the:
 implementation("androidx.activity:activity-ktx:1.4.0”)

To your app Gradle file and write the following code:

If you want your view model in your Fragment:
 implementation("androidx.fragment:fragment-ktx:1.4.0”)

In conclusion this is how to get your View Model with the KTX in activity or
fragment:

●

●

●

●

●

Or like before you can mention the variable type and let the generic be inferred
from that.

LiveData & MutableLiveData
Thats all very nice but please note the repetitive code to read the data from the
ViewModel.
If we use LiveData or MutableLiveData (if the contaned data can change) we
can observe the return result and get notified automatically in two cases:
1. The inner value that the LiveData wraps changes.
2. A lifecycle event that requires refreshing the value occurred.

LiveData is a holder class which holds and updates the activity/fragment
keeping in mind about their state. It uses special function called observe which
will update activity/fragment instantly if anything changes in the LiveData. As
LiveData class get the latest updated data but couldn’t find activity or
fragment, then they just hold the data and next time when activity or fragment
is resumed the observer will fetch updated data itself and provide it to activity/
fragment. For example, an activity that was in the background receives the
latest data right after it returns to the foreground.
If an activity or fragment is recreated due to a configuration change, like device
rotation, it immediately receives the latest available data. our observers are
bounded to activity or fragment so they will be destroyed when the activity/
fragment is destroyed. No need to handle it manually.

LiveData has some characteristics according to Google I/O 2017:
LiveData is an observable data holder so it can be observed.
Its lifecycle aware that prevents memory leakage in such a situation
like configuration changes.
LiveData automatically manages subscriptions. If you are observing a
liveData you don’t need to unsubscribe. The right things will happen in
the right times.
Doesn’t matter how many observers you have or what state they are,
all of it are merged into one lifecycle.
It doesn’t have any activity or fragment inside it but it works with both

●

●

●

1.

2.

3.

of them.
Also liveData makes testing easy because it’s kind of Android free(it
can be tested with our device).
The LiveData instance is doing all the fetching and updating work on
the Dispatchers.IO and not on the main thread.

Adding LiveData
In the ViewModel class replace the type of the system result from
Double to MutableLiveData<Double> - it is mutable since the inside
value - the double can change. Remove the get and set and create a
new function called setValue that receives the new Double value and
update the value field of the LiveData with the converted amount

In the MainActivity remove all of the result Text View updates. Remove
also the viewModel update from before. Now in the onCreate() set an
Observer to the ViewModel’s LiveData field, passing it the activity as
the lifecycle owner (for all the reasons mentioned above) and in the
callback add the one and only result Text View update.

Now in the onClick just call the the ViewModel setValue function
passing it the user dollar value and Thats it - The LiveData will do the
rest!

ViewModel to Communicate between fragments and Their
hosting activity
ViewModel is an ideal choice when you need to share data between multiple
fragments or between fragments and their hosting Activity.

Lets look at this ItemViewModel which will be shared by both the Activity and
its hosted Fragment:

Please note that while the actual stored value is MutableLiveData the get only
return LiveData this ensures consistency of our data.

Both your fragment and its host activity can retrieve a shared instance of a
ViewModel with activity scope by passing the activity into the
ViewModelProvider constructor. The ViewModelProvider handles instantiating
the ViewModel or retrieving it if it already exists. Both components can observe
and modify this data (in this example we use the KTX extensions library to get a
delegate that initial their view model lazy):

Share data between fragments
Two or more fragments in the same activity often need to communicate with
each other. For example, imagine one fragment that displays a list and another
that allows the user to apply various filters to the list.

These fragments can share a ViewModel using their activity scope to handle
this communication. By sharing the ViewModel in this way, the fragments do
not need to know about each other, and the activity does not need to do
anything to facilitate the communication.

Notice that both fragments use their host activity as the scope for the
ViewModelProvider. Because the fragments use the same scope, they receive
the same instance of the ViewModel, which enables them to communicate back
and forth.

Saved State module for ViewModel
As mentioned before View Model can survive configuration changes and store
our data. Before using it we used to pass our data through savedInstanceState
Bundle. We can still use the onSavednstanceState() as a backup in case our
recreation comes from system-initiated process death. In that case our View
Models will be killed also.

But onSavednstanceState() function is from the Activity where the ViewModel
actually the one that stores or remembers the UI state so that can cause allot of
boilerplate code. To solve this the view model has its own Bundle that can store
data between sessions.

All you have to do is to get the SaveStateHandle in you ViewModel’s
constructor (We will see later on that it also has a default binding)

Don’t worry you don’t have to do any additional configuration because the
default ViewModel factory provides the appropriate SavedStateHandle to your
ViewModel. So just go ahead and retrieve your View model like you did before

The SavedStateHandle class is a key-value map that allows you to write and
retrieve data to and from the saved state through the set() and get() methods.
Additionally, you can retrieve values from SavedStateHandle that are wrapped
in a LiveData observable using getLiveData(). When the key's value is updated,
the LiveData receives the new value. Most often, the value is set due to user
interactions, such as entering a query to filter a list of data. This updated value
can then be used to transform LiveData.

By using SavedStateHandle, the query value is retained across process death,
ensuring that the user sees the same set of filtered data before and after
recreation without the activity or fragment needing to manually save, restore,
and forward that value back to the ViewModel.

Here is a simple example on how to save the current user in SaveStateHandle

●

●

●

Usually you will use LiveData in your ViewModel. For that you can use the
SavedStateHandle.getLiveData() method. Here’s an example of replacing
getCurrentUser with a LiveData, which allows for observation:

SavedStateHandle also has other methods you might expect when interacting
with a key-value map:

contains(String key) - Checks if there is a value for the given key.
remove(String key) - Removes the value for the given key.
keys() - Returns all keys contained within the SavedStateHandle.

For supported types please refer to https://developer.android.com/topic/
libraries/architecture/viewmodel-savedstate#types

Transform LiveData
You may want to make changes to the value stored in a LiveData object before
dispatching it to the observers, or you may need to return a different LiveData
instance based on the value of another one. The Lifecycle package provides the
Transformations class which includes helper methods that support these

scenarios.

In both map and switchMap there is a source (or trigger) live data, and in both
cases you want to transform it to another live data. Which one will you use -
depends on the task that your transformation is doing.

Map() is conceptually identical to the use in RXJava, basically you are changing
a parameter of LiveData in another one
SwitchMap() instead you are going to substitute the LiveData itself with
another one! Typical case is when you retrieve some data from a Repository for
instance and to "eliminate" the previous LiveData (to garbage collect, to make
it more efficient the memory usually) you pass a new LiveData that execute the
same action(getting a query for instance)

To understand that difference Let's take an example, there is a LiveData which
emits a string and we want to display that string in capital letters:

With map (in activity or fragment)

the function passed to the map returns a string only, but it's the
Transformation#map which ultimately returns a LiveData.

With SwitchMap (also in activity or fragment)

If you see Transformations#switchMap has actually switched the LiveData. So,
again as per the documentation The function passed to switchMap() must
return a LiveData object.

So, in case of map it is the source LiveData you are transforming and in case of
switchMap the passed LiveData will act as a trigger on which it will switch to
another LiveData after unwrapping and dispatching the result downstream.

Transformation are useful because they are computed lazily (meaning that they
are not calculated unless someone is observing their retuned LiveData) that’s
why they goes well with the observer’s lifecycle without any additional
configuration.

They are very useful in case where a change in one object should return
another one. For example if we have a UI component that gets and address and
return postal code, then the we must register to a LiveData returned from our
repository. We can do it like this:

Which is not a good idea for two reasons the first is that each time the activity
or fragment is recreated and we are doing a new database fetch because we
don’t store the old value but rather fetching it all over again and the second one
is that each time he calls this function he is actually registering a new Live data
which is costly.

What we should be doing in that case is:

In this case, the postalCode field is defined as a transformation of the
addressInput. As long as your app has an active observer associated with the
postalCode field, the field's value is recalculated and retrieved whenever
addressInput changes and that’s it, no extra calculations are done.

https://medium.com/androiddevelopers/viewmodels-with-saved-state-jetpack-
navigation-data-binding-and-coroutines-df476b78144e

ViewModel NavGraph Integration

Before we saw that we can share information between fragments and their
hosting activity using the shared View Model that we can access from all
fragments:

But what can we do if we want a shared view Model by some of the
fragments and not all of them, While they all share the same Activity?

The solution is to this is to create a nested navigation graph and share a view
model to that graph

The new Navigation API introduces ViewModels associated to a Navigation
Graph. In practice, this means you can take a collection of associated
destinations, such as an onboarding flow, a login flow, or a checkout flow; put
them into a nested navigation graph; and enable shared data just between
those screens.

To create a nested navigation graph, you can select your screens, right click,
and select Move to Nested Graph → New Graph:

In the XML view, note the id of the nested navigation graph, in this case
checkout_graph:

Once you’ve done this, you get the ViewModel using by navGraphViewModels:

But don’t forget to add the KTX dependency:
 implementation ‘androidx.navigation:navigation-fragment-ktx:2.4.2’

To check it in our project simply a create a ViewModel with a single int property

In each of the fragments get a reference to it by using the navGraphViewModel
and supply it with your root navigation graph id and simply Toast the value
stored in your view model

ViewModelProvider Factory

Sometimes we want to initiate our view model and pass parameters to his
constructor so that we can use it’s init function for data fetching request for
example.

We will see that Hilt can inject necessary components such as a repository that
handles network and database requests. This is the preferred way, And it will be
show in the Hilt Model.

However, if you don’t want to use Hilt or simply Dagger you can inherit from the
NewInstanceFactory which implement the ViewmodelProvider.Factory interface
and override it’s create() function. Pass your arguments to your factory
implementation and in it call you view model constructor with the parameters
and return your constructor initiated view model. Pass your implementation to
the ViemodelProvider constructor which also gets a factory method besides the
lifecycle owner and That’s it!

Let’s say we want to pass this view model a string so he can use it in his init
function to initiate a database fetch

Now we need to create his Factory implementation (we pass the factory params
to our view model constructor):

And in the fragment or activity we can do this:

Or use the KTX lazy delegate:

●

●

●

●

●

●

●

●

Room

Download the full App Created in this Guide:
https://drive.google.com/file/d/1tVbM7C7kIt0rw3FcmelwZ1GON2GxJiGR/view?
usp=sharing

Let’s say we need to persist the data that added by the user. So we want a
persistence library like Room. It is an Object-Mapping library that provides an
abstraction layer over SQLite that doesn’t try to hide SQLite but rather embrace
it.

There are some reasons why we use room for data persistence:
It’s based on SQLite so we can write SQL queries. Don’t forget that
Android supports SQLite as a proven technology from the day one.
With Room we can have observability, because it can return LiveData
objects and does the object mapping for you.
Room creates the database schema using your entity definitions and
does the sql operations like insert, update and delete using annotation
processing, resulting in lesser boilerplate code.
Room speaks SQL. So it knows whether you made a typo or did
something wrong in queries at compile time.
You can create abstract suspended functions and let room create all
the logic for you.

Other SQLite Android libraries:
1. Sugar ORM – This is an object relational mapper that wrap SQLite database.
It map sqlite table to a java plain object.
2. Realm Database – It provides offline-first functionality & data persistence
through an easy-to-use API.
3. SQLBrite – A lightweight wrapper around SQLiteOpenHelper which
introduces reactive stream semantics to SQL operations

Primary components
There are three major components in Room:

Data entities that represent tables in your app's database.
Data access objects (DAOs) that provide methods that your app can
use to query, update, insert, and delete data in the database.
The database class that holds the database and serves as the main
access point for the underlying connection to your app's persisted
data.

First Step - Add the latest room library
Visit this page and import the room library to your app Gradle project file:

 def room_version = "2.4.2"

 implementation "androidx.room:room-runtime:$room_version"
 kapt "androidx.room:room-compiler:$room_version"

Important Note:
In the app Gradle Add the plugin :
id 'kotlin-kapt'

Please note we replaced the room annotationProcessor to kapt - Kapt is the
Kotlin Annotation Processing Tool. If you want to be able to reference
generated code from Kotlin, you need to use kapt.

Second Step - Define your Entities
Use the @Entity annotation to define a new entity - this you will do for the
basic Kotlin or Java class you want to save in your database - you can
optionally give the table a name using (tableNmae = “[table name]”) the default
table name is the class name.
Define your primary key using @PrimaryKey next to the property. That will serve
as your primary key. If you don’t have a unique key to your objects like emails
you can set it to be auto generated use (autoGenerate = true) next to it.

If you want a different column name in the data base from the property name
use @ColumnInfo(name = [“Your name”])

It’s recommended you always use the @ColumnInfo annotation as it gives you
more flexibility to rename the members without having to change the database
column names. Changing the column names leads to a change in the database
schema and therefore you need to implement a migration or specific
instructions not to implement migration.

For example:

Third step - define you Dao classes

Dao classes will allow you to abstract the database communication in a more
logical layer which will be much easier to mock in tests (compared to running
direct sql queries). It also automatically does the conversion from Cursor to
your application classes so you don't need to deal with lower level database
APIs for most of your data access.

Room also verifies all of your queries in Dao classes while the application is
being compiled so that if there is a problem in one of the queries, you will be
notified instantly while you are writing it.

The class marked with @Dao should either be an interface or an abstract class.
At compile time, Room will generate an implementation of this class when it is
referenced by a Database.
An abstract @Dao class can optionally have a constructor that takes a
Database as its only parameter.
It is recommended to have multiple Dao classes in your codebase depending
on the tables they interact.

●

●

●

●

●

●

onConflict annotation parameter signifies what to do if a conflict happens on
insertion. It can take the following values:

OnConflictStrategy.REPLACE : To replace the old data and continue
the transaction.
OnConflictStrategy.ABORT : To abort the transaction. The
transaction is rolled back.
OnConflictStrategy.NONE : To ignore the conflict.

Third step - create you database
Now create the AppDatabase class to hold the database. AppDatabase defines
the database configuration and serves as the app's main access point to the
persisted data. The database class must satisfy the following conditions:

The class must be annotated with a @Database annotation that
includes an entities array that lists all of the data entities associated
with the database.
The class must be an abstract class that extends RoomDatabase.
For each DAO class that is associated with the database, the database
class must define an abstract method that has zero arguments and
returns an instance of the DAO class.

In order to make sure we don’t have multiple database instances open at the
same time we define a RoomDatabase instance in the companion object of our
class. We need the application context to initialized the database. So the best
way to handle this is to and a getDatabase function that receives the context

and builds the database.

We’ll define an abstract method that returns the ItemsDao. Everything is
abstract because Room is the one that generates the implementation for us.

exportSchema
You can set annotation processor argument to tell Room to export the schema
into a folder. Even though it is not mandatory, it is a good practice to have
version history in your codebase and you should commit that file into your
version control system (but don't ship it with your app!).
So if you don't need to check the schema and you want to get rid of the
warning, just add exportSchema = false to your RoomDatabase

@Volatile - Volatile means, it will not be stored in the local cache. Meaning:
writes to this field are immediately made visible to other threads.

Forth step(optional)
create your helper class the gives a single access point to your database
You can think of repository as the single access point for getting the data. The

class will include all the functions from which we can get all the data.

Please note that while the fetching that return LiveData is done on a
background thread automatically, adding the item is done on the application
main thread! until we use coroutines you can use this but be sure to add
the .allowMainThreadQueries() to your ROOM database builder. If you don’t do
this the app will crash and you will get an error message “Cannot access
database on the main”.

Later we will solve this by adding Coroutines to out project.

Fifth step
Update your view model
Here we need to extend the Android ViewModel because we need the
application instance to give to our database

And That’s it you have integrated ROOM. Go ahead and check your
implementation by creating the full project

Let’s add our ItemViewModel
In our case we want to share one ViewModel for the whole activity because it
makes sense. We have three Fragments all need to access the same
information: one shows the list, one adds an item to it and one shows a single
item from the list. The ViewModel will hold all the items as a LiveData property
and the chosen item also as LiveData, it will have functions to add an item,
delete an item, delete all items and set the chosen item. Please note that we
will inherit from the AndroidViewModel because we need the Context in order
to create the repository private instance who will serve as a single access point
for our data.
Our final View Model will look like this (please note that while the chosen item
must be a mutable live data we only expose it as Live Data in order to keep our
data persistent):

Note that we also added a delete all function to the repository and to the Dao:

Now let’s go back the the UI - To all fragment get the view Model bounded to
the activity scope and because all of them lives in the same activity there will
be one instance of it that will be shared by all of them. So add this line to the
top of each fragment:

Go to the AllItemsFragment In the onViewCreated get the viewModel’s items
LiveData and observe it. In the callback which is called with the updated list of
items pass it to the adapter and implement the callback functions (remove the
code with the ItemManager and replace it with this):

Before finishing the AllItemsFragment go ahead to your adapter and add a
function that will return an Item according to the position, because in the
fragment upon swiping we get the position but we need to pass an Item to the
viewModel delete function. So we will add a function to get an item according
to its position(in ItemAdapter):

Now on the onSwipe of the ItemTouchHelper use this function:

In the AddItemFragment remove the ItemManger access and replace it with
the viewModel call (remember you added it as a property before):

And in the DetailItemFragment after the view had been created observe your
chosen item live data and update your UI (what was previously located in the
arguments let scope):

Adding a Menu
In order to add an action/option menu to the top of the AllItemsFragment we
create the following xml file under the resource menu folder:

This menu item contains an id, a vector asset we added before (just right click
on the res folder choose new and then choose vector asset, in the new window
choose a trash bin from the clipart and click finish), and a showAsAction
attribute set to always means it will be shown all the rime on the menu and not
under the thee dots (try giving different values).

In the AllItemsFragment where the menu is shown override these two functions:

The first one will be called by the system when its time to create the option
menu and we will use the given menu inflater to inflate our own xml menu file
we just dud to the empty menu the os gives us.
The second function is called upon pressing the action menu items and after
presenting a confirmation dialog we will use our viewModel deleteAll function.

Please note that in order for the fragment to show the Manu you must add this
line in the onCreateView of the AllItemsFragment function:

this is only needed when presenting the menu in a fragment and not in the
activity - if we would have presented the menu in the activity it would have
existed throughout all go the fragments and we don’t want that.

And that’s it the project is finished run and test your app.

Please note that we still allow queries too run on the application
main thread:

Try to remove this line and test your app.
Please note the the getItems works just fine because it returns LiveData and
LiveData by default is doing all of its work on the Dispatchers.IO group of
threads which are background thread ads and not on the main thread but try to
add an item and see what happens… YES the app crashed and ion the logical
you can’t find the following message:

And that’s why we need to study Coroutines (Come back to this
tutorial afterwards).

Lets improve our background work(After the co-routine chapter):

The first solution is for repository to implement CoroutineScope and override
CoroutineContext to operate in IO Thread.

Now you can remove the allowMainThreadQueries() from your database
instance initialization and go ahead and run your app and try adding an item…
No crash!
Try deleting and it carshare s again, so do the same for the delete functions
they are not returning LiveData:

The problem with this solution is that it is not subject to the principle of
structured concurrency meaning there is no actual scope confined to any
lifecycle for these coroutines. So although it works we can make it better.

The best option is use the ROOM coroutine KTX extensions and our view
model scope.

Room nows comes with coroutine support. DAO methods can now be marked
as suspended to ensure that they are not executed on the main thread.
We can make the Dao addItem() function to be suspended and then Room will
generate the code using coroutines by himself but we must call it from another
suspended function or a coroutine context so we will use the viewModel scope
to execute it.

Just add the following dependency to your app grade file:
implementation("androidx.room:room-ktx:$room_version")

And make the DAO insert, update and delete functions suspended:

Thats it under the hood ROOM automatically replaces this auto implemented
synchronous code:

With this:

The generated code ensures that the insert happens off of the UI thread. In our
suspend function implementation, the same logic from the synchronous insert
method is wrapped in a `Callable`. Room calls the `CoroutinesRoom.execute`
suspend function, which switches to a background dispatcher, depending on
whether the database is opened and we are in a transaction or not. If we check
the CoroutinesRoom.execute() implementation, we see that Room moves
callable.call() to a different CoroutineContext. This is derived from the
executors you provide when building your database or by default will use the
Architecture Components IO Executor.

So the actual changes in our code is making the Dao functions suspended and
because it is called from the repository functions we should make them also
suspended and execute it from the viewModelScope:

viewModelScope is a Kotlin extension property on the ViewModel class. It is a
CoroutineScope that is cancelled once the ViewModel is destroyed (when
onCleared() is called). Thus when you’re using a ViewModel, you can start all of
your coroutines using this scope.

Please note that @Transaction methods can also be suspended and they can
call other suspended DAO functions:

Room offers allot of functionality and flexibility than what we’ve covered — you
can define how Room should handle database conflicts, you can store types
that otherwise, natively with SQLite can’t be stored, like Date, by creating
TypeConverters, you can implement complex queries, using JOIN and other
SQL functionality, create database views, pre-populate your database or trigger
certain database actions whenever the database is created or opened.

For more reading please refer to
https://developer.android.com/training/data-storage/room

●

●

●

●

Coroutines Kotlin

Download the Full App created in this Guide:
https://drive.google.com/file/d/1PDhzzYXb4lRXYNuniU2YMpQflv07JAKZ/
view?usp=sharing

Download the Architecture Project with Coroutines support
https://drive.google.com/file/d/1azpucisy6VxHNAPIVg2EecD_MqAxn4L7/
view?usp=sharing

Coroutines is Google’s recommended solution for asynchronous
programming on Android.

Coroutines are:
Lightweight: You can run many coroutines on a single thread due to
support for suspension, which doesn't block the thread where the
coroutine is running. Suspending saves memory over blocking while
supporting many concurrent operations.
Fewer memory leaks: Use structured concurrency to run operations
within a scope.
Built-in cancellation support: Cancellation is propagated
automatically through the running coroutine hierarchy.
Jetpack integration: Many Jetpack libraries include extensions that
provide full coroutines support. Some libraries also provide their own
coroutine scope that you can use for structured concurrency.

Co - cooperate
Routines - functions

Timing functions

One can think of a coroutine as a light-weight thread. Like threads, coroutines
can run in parallel, wait for each other and communicate. The biggest
difference is that coroutines are very cheap, almost free: we can create
thousands of them, and pay very little in terms of performance. True threads,
on the other hand, are expensive to start and keep around. A thousand threads
can be a serious challenge for a modern machine.

Suspended functions are at the center of everything in coroutines. A
suspended function is simply a function that can be paused and resumed at a
later time. They can execute a long running operation and wait for it to
complete without blocking. You can even stop or suspend your function while
you are waiting for a callback and continue it when you get the result.
This is why You can run many coroutines on a single thread. Suspension
doesn't block the thread where the coroutine is running. We save allot of

memory by not blocking the thread.

The exact definition of Coroutines: A framework to manage concurrency in a
more performant and simple way with its lightweight thread which is written on
top of the actual threading framework to get the most out of it by taking the
advantage of cooperative nature of functions.

ViewModel, LiveData and LifeCycle includes a set of KTX extensions that work
directly with coroutines. We will see later on.

First you need to import the latest Kotlin coroutines to your android studio
project. You can find the latest version here. Follow the Gradle instructions. Add
both the core and the android libraries :

https://github.com/Kotlin/kotlinx.coroutines

implementation 'org.jetbrains.kotlinx:kotlinx-coroutines-android:1.6.0'
implementation 'org.jetbrains.kotlinx:kotlinx-coroutines-core:1.6.0'

Then create the following activity that suppose to fetch a user from the
database (fetching illustrated here by sleep - sometimes working and sleeping
is exactly the same:)) and updating it’s details in Text View(make sure your
default activity_main.xml file has a Text View whose id is text_view and use
view binding.

If we execute it like this it would result in a very poor user experience - a stuck
app for 3 secs!

We have to define a Coroutine scope.

Coroutine scope promotes structured concurrency, whereby you can launch
multiple coroutines in the same scope and cancel the scope (which in turn
cancels all the coroutines within that scope).

if we are not already in a coroutine scope we can use the GlobalScope which
the the scope of all the app. As along as the app is alive all our coroutines can
run in this scope(there are more scopes and working with this scope is not
recommended)
A global CoroutineScope not bound to any job. Global scope is used to launch
top-level coroutines which are operating on the whole application lifetime and

●

●

●

●

are not cancelled prematurely.

Active coroutines launched in GlobalScope do not keep the process alive. They
are like daemon threads.
This is a delicate API. It is easy to accidentally create resource or memory leaks
when GlobalScope is used. A coroutine launched in GlobalScope is not subject
to the principle of structured concurrency, so if it hangs or gets delayed due to
a problem (e.g. due to a slow network), it will stay working and consuming
resources until the app finishes.

From the GlobalScope we can call launch() that can execute our coroutines and
return a job object that can be started if the coroutine start is lazy (by default
all coroutines created with this function are executed immediately) or cancelled
later on, or async() which is almost the same except it returns a Deferred
object containing the Coroutine result. The coroutine created with this function
is cancelled if the deferred object is cancelled.

Both function need a CoroutuineContext. The coroutine Context has a default
value.
The coroutine context includes a coroutine dispatcher that determines
what thread or threads the corresponding coroutine uses for its execution.
The coroutine dispatcher can confine coroutine execution to a specific thread,
dispatch it to a thread pool, or let it run unconfined.

CoroutineDispatcher tells the coroutine builder (in our case launch{} or
async{}) as to which pool of threads is to be used. There are a few predefined
Dispatchers available.

Dispatchers.Default: CPU-intensive work, such as sorting large lists,
doing complex calculations and similar. A shared pool of threads on
the JVM backs it.
Dispatchers.IO: networking or reading and writing from files. In short
– any input and output, as the name states
Dispatchers.Main: mandatory dispatcher for performing UI-related
events in Android's main or UI thread.
Dispatchers.Unconfined - A coroutine dispatcher that is not confined
to any specific thread. The unconfined dispatcher is appropriate for
coroutines which neither consume CPU time nor update any shared
data (like UI) confined to a specific thread. From the Kotlin docs: The
unconfined dispatcher is an advanced mechanism that can be helpful
in certain corner cases where dispatching of a coroutine for its
execution later is not needed or produces undesirable side-effects,
because some operation in a coroutine must be performed right away.
The unconfined dispatcher should not be used in general code.

When launch {} is used without parameters, it inherits the context (and thus
dispatcher) from the CoroutineScope it is being launched from. In this case of

the Global Scope its default context is the the Dispatcher.Default. We can
specify Any other Context we want to the GloablScope and run the launch or
async result on the Dispatcher.IO like that:

GlobalScope.launch(Dispatchers.IO) {}

Try commenting out the existing code and run the following (watch the output):

GlobalScope.launch {
 println("Default : I'm working in thread ${Thread.currentThread().name}")
}
GlobalScope.launch(Dispatchers.IO) {
 println("IO : I'm working in thread ${Thread.currentThread().name}")
}
GlobalScope.launch(Dispatchers.Main) {
 println("Main : I'm working in thread $
{Thread.currentThread().name}")
}
GlobalScope.launch(newSingleThreadContext("MyOwnThread")) { // will get its
own new thread
 println("newSingleThreadContext: I'm working in thread $
{Thread.currentThread().name}")
}

So to shorten our definitions: Each coroutine is a Job, a job must run in a scope
for efficient memory management and must receive a Context which include
the Dispatcher - which threads the coroutine will run on.

First step:

This will cause the app to crash when updating ui from the background!

If we call async we get Deferred value that can be extract using await() - this
is very similar to Future in Java
Please note the await() is a suspended function (it make sense cause it can’t
run before the function that it is working on will finish) that can only be called
from another suspended function or a Coroutine context.

Second step:

Another option instead of turning the fetch function to suspended is to call
await() in the fetchAndShowUser

Instead of calling from the GlobalScope and await for the result we can use the
function withContext that creates a suspended function that runs in the given
(or from the scope) Context.

Complete definition: Calls the specified suspending block with a given
coroutine context, suspends until it completes, and returns the result.
Before the KTX this is what we used.

suspend fun <T> withContext(context: CoroutineContext, block: suspend
CoroutineScope.() -> T): T

withContext like await() it is also a suspended function (it make sense since it
must suspend the coroutine until the work is finished) so the fetchUser must
also be suspended.
Let’s see what are the consequences of using withContext:

Add another Text View to your xml file and change both ids to text_view_one
and text_view_two

For example this code will take 6 secs - First the first user is fetched and only
then does the fetching of the second user starts (you can change the
Thread.sleep() to the suspended function delay())

Which is exactly the same as this:

Our fetch and show user waits for each user to be fetched and they are fetched
one after the other and not simultaneously.
But if we change our code to the following all fetching work will at the same
time:

And this is an advantage async has, we can’t achieve with witchContext!

Coroutines are not a new concept, let alone invented by Kotlin. They've been
around for decades and are popular in some other programming languages
such as Go. What is important to note though is that the way they're
implemented in Kotlin, most of the functionality is delegated to libraries. In fact,
beyond the suspend keyword, no other keywords are added to the language.
This is somewhat different from languages such as C# that have async and
await as part of the syntax. With Kotlin, these are just library functions.

A big improvement to the above code is taking advantage of the fact that the
Activity itself can serve as the Coroutine Context for creating new Coroutines!

Our activity needs to implement the CoroutineScope interface and override the
get method that returns the Coroutine context needed for calling the launch
and async functions the can run our Coroutines. This way we don’t needed to
call launch or async on the global scope. We also doesn’t need to specify the
Coroutine Context and the Dispatchers since the get() method return the
Context

And thus our code can be altered to this:

Again, when no Dispatchers is given to the launch or async coroutines it
runs on the general context they are in.
So we don’t have to specify to launch which scope and on which dispatcher to
run in since it gets them from the activity.

Again one can think that all the coroutines launched from that scope will be
auto cancelled when the activity is destroyed. But this is not the case. Just add
this to the on create function. This code will create a coroutine that unless
cancelled will last for a very long time. We will close our activity and see if the
exception is thrown when the activity is destroyed and whether the coroutines
ends with it:

We kill the activity and the exception is not thrown! No one killed the coroutine
when onDestroyed got called.

This can be done by bounding the scope to a specific Job. First lets understand
what is a Job:

Job
A coroutine itself is represented by a Job. A Job is a handle to a coroutine. For
every coroutine that you create (by launch or async - deferred is also a job -
you can cancel it), it returns a Job instance that uniquely identifies the
coroutine and manages its lifecycle. You can also pass a Job to a
CoroutineScope to keep a handle on its lifecycle.
The coroutine scope is determined by an empty Job it create for himself if you
won’t pass any and using the + operator he add this job to his internal hash
map and detains the scope lifecycle by it.

So we will create an empty job in the concrete and cancel is on the OnDestroy
and add it to the get function like this:

No test your code again. Kill the activity. Is the exception thrown? Oh, ya…

We can create a lazy task that can be saved for later execution and will only be
executed when needed, when we call start on the job returned.
This job will wait for the start function in oppose to regular launch call with
default CoroutineStart parameter of DEFAULT and it start immediately

Another Coroutines useful suspended functions is:
joinAll() - that waits for all coroutines to return
Job.join() - called on specific Coroutine we want to wait for it to finish
repeat() - for repeated actions

delay(mills) which is much better than Thread.sleep because the later blocks

●

●

●

the whole thread while the former stops only the specific Coroutine and the
others running on the same thread are not stopped.

Now we will see there is much more elegant solution for bounding our
coroutines to the activity lifecycle that comes with the KTX-Extenssions kit.

More on Coroutines Scope
To avoid work leaks you should organize your coroutines by adding them to a
CoroutineScope, which is an object that keeps track of coroutines.
CoroutineScopes can be cancelled; and when you cancel a scope, they cancel
all the associated coroutines. Above I’m using the GlobalScope, which is, as the
name implies, a CoroutineScope that is available globally. It’s generally not
good practice to use the GlobalScope for the same reasons it’s generally not
good to write globally accessible variables. So you’ll need to either make a
scope, or get access to one.
In Activity or Fragment you can use the lifeCycleScope
In ViewModels, this is easy if you use viewModelScope.
And in LiveData you can use the liveDataScope

Add the following implementations (if needed) in your app Gradle file:
For ViewModelScope, use androidx.lifecycle:lifecycle-viewmodel-
ktx:2.4.1 or higher.
For LifecycleScope, use androidx.lifecycle:lifecycle-runtime-ktx:2.4.1
or higher.
For liveData, use androidx.lifecycle:lifecycle-livedata-ktx:2.4.1 or
higher.

LifecycleScope
A LifecycleScope is defined for each Lifecycle object. Any coroutine launched
in this scope is canceled when the Lifecycle is destroyed. You can access the
CoroutineScope of the Lifecycle either via lifecycle.coroutineScope or
lifecycleOwner.lifecycleScope properties. It is important to understand that the
default Dispatchers of the lifeCycleScope is the Dispatchers.Main meaning the
main thread of the application.

In an activity or fragment se the lifeCycleScope like this:

Even though the CoroutineScope provides a proper way to cancel long-running
operations automatically, you might have other cases where you want to
suspend execution of a code block unless the Lifecycle is in a certain state. For
example, to run a FragmentTransaction, you must wait until the Lifecycle is at
least STARTED. For these cases, Lifecycle provides additional methods:
lifecycle.whenCreated, lifecycle.whenStarted, and lifecycle.whenResumed. Any
coroutine run inside these blocks is suspended if the Lifecycle isn't at least in
the minimal desired state.

And our revised code will look life this (check it, kill your activity and see the
exception is thrown):

viewModelScope
Often if your ViewModel is destroyed, there’s a bunch of “work” associated with
the ViewModel that should be stopped as well. For example, let’s say you’re
preparing a bitmap to show on-screen. That’s an example of work you should
do without blocking the main thread and work that should be stopped if you
permanently navigate away from or close the screen. For work like this, you
should use viewModelScope.

viewModelScope is a Kotlin extension property on the ViewModel class. It is a
CoroutineScope that is cancelled once the ViewModel is destroyed (when
onCleared() is called). Thus when you’re using a ViewModel, you can start all of
your coroutines using this scope.

For ViewModelScope, use androidx.lifecycle:lifecycle-viewmodel-ktx:2.3.1

Here is an example:

Just think that the above code save all the code below:

More on Coroutines And View Model
https://medium.com/androiddevelopers/easy-coroutines-in-android-
viewmodelscope-25bffb605471
(Also available testing coroutines with mockito)
https://medium.com/androiddevelopers/viewmodels-with-saved-state-jetpack-
navigation-data-binding-and-coroutines-df476b78144e

LiveData Scope special use cases of coroutines and Live Data
When using LiveData, you might need to calculate values asynchronously. For
example, you might want to retrieve a user's preferences and serve them to
your UI. In these cases, you can use the liveData builder function to call a
suspend function, serving the result as a LiveData object.

The code block starts executing when LiveData becomes active and is
automatically canceled after a configurable timeout when the LiveData
becomes inactive. If it is canceled before completion, it is restarted if the
LiveData becomes active again. If it completed successfully in a previous run, it
doesn't restart.

You can also emit multiple values from the block. Each emit() call suspends
the execution of the block until the LiveData value is set on the main
thread.

You can emit multiple values from a LiveData by calling the emitSource()
function whenever you want to emit a new value. Note that each call to emit()
or emitSource() removes the previously-added source.

This means that you can use emit whenever you want to set a value once, but if
you want to connect your live data to another live data value you use emit
source.

suspendCoroutine
Obtains the current continuation instance inside suspend functions and
suspends the currently running coroutine.
This is usually done to prevent nesting of callbacks and use a single suspended
function instead

When we use this code we can simply call awaitTask function and get the info
result without any callback hassle from our side.
The block of code passed to suspendCoroutine { ... } should not block a thread
that it is being invoked on, allowing the coroutine to be suspended. This way,
the actual thread can be used for other tasks. This is a key feature that allows
Kotlin coroutines to scale and to run multiple coroutines even on the single UI
thread.

Launchers, Providers & Location

Download the Launchers and Providers PDF Guide:
https://drive.google.com/file/d/1QVw_1jvaa4lO0IdZ3KFM1okWoCGF1N5B/view?
usp=sharing

Download the Launchers and Providers Startup Files:
https://drive.google.com/file/d/1OMSbboOlzCBvCT7VE_fQrnZQRQGouKPc/
view?usp=sharing

Download The Launchers and Providers full App Created in the Guide:
https://drive.google.com/file/d/1EvESUlnFAVyik2aWrUqNstBch-f8mPKU/view?
usp=sharing

Download the Location App Dependencies PDF:
https://drive.google.com/file/d/1w6j5AcsCBJSVHiaBblqufLDq1EJsaTWG/view?
usp=sharing

Download the Location App created in the Videos:
https://drive.google.com/file/d/1WVfzHR2aWcv2_-hxMBgURJ-hC8Gj7ilq/view?
usp=sharing

Download the Contacts App Starter files:
https://drive.google.com/file/d/1u3H9MYG_H9M_uDNl1wQd0hpuwNocjHdk/
view?usp=sharing

Download the Contacts App Dependencies PDF:
\https://drive.google.com/file/d/1QijLRWRrQZ6UbbNp8GRkGL4lxGXzCeGG/
view?usp=sharing

Download the Contacts Full App created in the videos:
https://drive.google.com/file/d/1moyGiOBSlVyz83LUjMjvLknnBKmJtuG7/view?
usp=sharing

The new Launchers API + Working with FileProvider

AndroidX introduced a new API for opening an Activity or requesting a
permission and getting back a result from them.
First let’s understand that the old way is now deprecated. In the old way we
used to give each activity or permission request a different code cause they all
retuned to same overridden function (you can only override a function one
time…) and we had to distinguish from where we have just retuned from with
the code checking - that caused a messy and C type coding , it violated the
single responsibility cause the same function is responsible for a lot of different
actions, its confusing and additionally, if another similar functionality screen
appears in the app, we won’t be able to reuse our code and will have to
duplicate it.

For that reason JetPack introduced the new Activity for result API

The activity for result new Api based on these three steps:

Step 1
Contract is a class that implements the ActivityResultContract<I,O> interface.
Where I define the type of input data necessary to start the Activity, and O
defines the callback result type.

The great thing is that unlike the old api here we have pre-made contacts that
fill the most common tasks like taking a picture and getting the thumbnail or
the full photo back, picking an image from the gallery, picking a contact and
much more. Here you can find a list of the contacts :
https://developer.android.com/reference/androidx/activity/result/contract/
ActivityResultContracts
we can also use the pre-made general contract who looks similar to the old api.
Later we see how to create a contract yourself and how to work with the
general contract but for now we will use the pre-made contracts.

Step 2
The next step is to register the contract in the activity or fragment by calling
registerForActivityResult(). You need to pass ActivityResultContract and
ActivityResultCallback as parameters. The callback will be invoked when the
result is received. It is important to register the contact before the activity or
fragment is created.

This is the official reason for the new api. Google wanted to decouple the
launching from the registering because sometimes due to low memory
conditions our process or activity can get destroyed, and the result callback
needs to be available when your process and activity are recreated, for that
reason the callback must be unconditionally registered every time your activity
is created.

Step 3
To start the Activity for result, we only need to call launch() on the
ActivityResultLauncher object that we have obtained in the previous step.

Build a simple usage app

Open a new Android studio project and copy the xml files from the starters
folder.
Bind your views and return the root and create also the TestActivity and bind
it’s views.
Add the following dependencies to your app grade file:

implementation 'androidx.core:core-ktx:1.6.0'

implementation 'com.github.bumptech.glide:glide:4.12.0'
annotationProcessor 'com.github.bumptech.glide:compiler:4.12.0'

Lets look at those three stages with the most common contracts:

Step 2 - Register - (No need for Step 1 because the contact already exists)
When Activity created

Step 3 - Launching
When pressing the button for example

There is also the General contract - we can use it in one time cases where there
isn’t a pre-defined contract for our action and we don’t want to define our own
contract - lets demonstrate with speech recognition:

●

●

Create your own contract
When creating a contract, we should implement two of its methods:

createIntent() — accepts input data and creates an intent, which will
be later launched by calling launch()
parseResult() — is responsible for returning the result, handling
resultCode, and parsing the data.

Another method, getSynchronousResult(), can be overridden if necessary. It
allows you to return the result immediately, without starting the Activity, for
example, if the received input data is invalid. If this behavior is not required, the
method returns null by default.

For example lets look at a test activity that receives the user name and return
his grade:
The Activity:

You need to create the following contract that receives s String the tester name
and returns Int which is his grade

And now can we can register a contract like this:

And execute it like this:

Getting the full size photo using FileProvider

To get a full size photo we need to supply a URI for the system to save the
photo taken. But there is a problem.
When writing this:

Here we gave out path to our app folder in a he external storage. Writing to this
path don’t require permission, all files in this folder can be shared with others
and they will be removed when the user uninstall our app.
And add the following code to you result callback.

When executing this code we get the following error:

This as Android exception that was added in API 24 and it meaning that
application exposes a file:// uri to another app.
We are here by exposing a path of our file system to another app that may have

not asked for the READ_EXTERNAL_STORAGE permission and it can potentially
read the data from there even long after her task of saving the image had
finished.

One bad solution to “solve” this problem as to change the policy. Like any other
Android exception we can simply change the strict policy and all is solved:

Really? Do you seriously think that this is the answer to our problem. The risk
stays, we didn’t solve it just bypassed it.

So remove these lines and understand the real solution:

The real solution is to provide a temporary uri through FileProvider which we
must add to our manifest like any other component. We must allow this
FileProvider to create URI’s and even tell him where he can do this(in which
directories) only then we can request it to create a temporary uri starting with
“content://“ this is uri is only valid until the receiving app is destroyed. After that
this uri is no longer valid and points to nothing!

Content providers are one of the primary building blocks of Android
applications, providing content to applications. They encapsulate data and
provide it to applications through the single ContentResolver interface. A
content provider is only required if you need to share data between multiple
applications. For example, the contacts data is used by multiple applications
and must be stored in a content provider. If you don't need to share data
amongst multiple applications you can use a database directly via
SQLiteDatabase.

Here are the full stages:

In the resource folder create the xml directory if not exists and create an xml
file with the <paths> root element
This file will contain the paths that the provider can create temporary uri into

In our case we will save the file to the external storage of the application - it will
be deleted when we uninstall our app but we can use it to store our own files
and share them with others. Writing or reading to or from this folder doesn’t
require any special permissions since Android 4.4
In particular we will add the picture to the Pictures subdirectory and we share it
as images (to hide the actual path)

Now we need to Add a FileProvider <provider> tag in AndroidManifest.xml
under <application> tag. Specify a unique authority for the android:authorities
attribute to avoid conflicts(use your package). Also allow him to grant URI
permission and specify the location of the xml file coating the file paths you just
created.

android:authorities A list of one or more URI authorities that identify data
offered by the content provider.
The Android system stores references to content providers according to an
authority string, part of the provider's content URI that will be created by
him.

For example lets look of the generated uri:
content://il.co.syntax.activityresultlauncherkotlin.provider/my_images/temp.jpg
The content: scheme identifies the URI as a content URI pointing to an Android
content provider. The authority il.co.syntax.activityresultlauncherkotlin.provider
identifies the provider itself; The substring /my_images/temp.jpg is a path
hidden by the name attribute), which the content provider can use to identify
subsets of the provider data.

We have just Declared a content provider component. A content provider is a
subclass of ContentProvider that supplies structured access to data managed
by the application. All content providers in your application must be defined in a
<provider> element in the manifest file; otherwise, the system is unaware of
them and won’t run them.
You only declare content providers that are part of your application. Content
providers in other applications that you use in your application should not be
declared.

The last thing is to ask the File Provider to create the temporary URI:

That’s it.

Runtime Permissions with Launchers

Requesting permission or permission is just another pre-made contract we
have!

Lets say that in the previous example we wanted to save our image in the
external storage that is shared for all apps, for example we want the picture to
be added to the gallery and we don’t want it to be deleted when the user
removes the app. This place:

Now we would have needed WRITE_EXTERNAL_STORAGE permission (it grant
us the also READ permission implicitly), let’s look at the new jetpack launcher
tool that helps us also here (The old permission way was exactly the same as
the old activity for result).

First initialize your launchers with the pre-made contracts:

Note: we have also the ActivityResultContracts.RequestMultiplePermissions()
that returns not ActivityResultLauncher<String>

But a ActivityResultLauncher<Array<out String>> and the lambda expression is
not boolean but a map of string and boolean. And of course when we launch it
we pass and array of string and not a single one.

Here is how we launch our permission request:

And put your full size camera launcher in the granted section

https://developer.android.com/training/basics/intents/result
https://medium.com/e-legion/the-right-way-to-get-a-result-part-i-activity-
result-api-6efbcaa5600d

Receiving an activity result in a separate class
While the ComponentActivity and Fragment classes implement the
ActivityResultCaller interface to allow you to use the registerForActivityResult()
APIs, you can also receive the activity result in a separate class that does not
implement ActivityResultCaller by using ActivityResultRegistry directly.
For example, you might want to implement a LifecycleObserver that handles
registering a contract along with launching the launcher:

When using the ActivityResultRegistry APIs, it's strongly recommended to use
the APIs that take a LifecycleOwner, as the LifecycleOwner automatically
removes your registered launcher when the Lifecycle is destroyed. However, in
cases where a LifecycleOwner is not available, each ActivityResultLauncher
class allows you to manually call unregister() as an alternative.

Firebase MVVM

Download the App Starter Files:
https://drive.google.com/file/d/1tzmmt0sv0LwVH1-SGYq2YaPRpJhVh5uT/view?
usp=sharing

Download the Starter project(optional):
https://drive.google.com/file/d/1QVqTadZQ9wLvyUHh-u8iNIe3nXy3tQ3u/view?
usp=sharing

Download the Full Firebase App Created in the videos:
https://drive.google.com/file/d/1DvSgazhaCvSHpxF__v-3YZanidFn2sRp/view?
usp=sharing

1.

2.

3.

Dependency Injection with Hilt

Download the full App Created in this Guide:
https://drive.google.com/file/d/1C2mejEMsaIzfdJZ8BtF3WTCUv7SCKFLj/view?
usp=sharing

A dependency is an object that another object requires. In other words, the
latter object depends on the former for it to function. For example, a Car class
might need a reference to an Engine class.

There are three ways for a class to get an object it needs:
The class constructs the dependency it needs. In the example above,
Car would create and initialize its own instance of Engine.
Grab it from somewhere else. Some Android APIs, such as Context
getters and getSystemService(), work this way.
Have it supplied as a parameter. The app can provide these
dependencies when the class is constructed or pass them in to the
functions that need each dependency. In the example above, the Car
constructor would receive Engine as a parameter - this dependency
injection! With this approach you take the dependencies of a class
and provide them rather than having the class instance obtain them
herself.

Dependency Injection is whereby dependencies are provided to a class
instead of the class having to create them itself. Hilt is a standardized way
of enforcing dependency injection in an Android application.

In the first two options Car and Engine are tightly coupled - an instance of Car
uses one type of Engine, and no subclasses or alternative implementations
can easily be used. If the Car were to construct its own Engine, you would
have to create two types of Car instead of just reusing the same Car for engines
of type Gas and Electric. It also makes the tests much harder because Car
must have a real instance of engine thus preventing us from the ability to
mock it.

Without dependency injection:

With dependency injection

Write these classes in a new android studio project.

Lets look at the Reusability of Car:
You can pass in different implementations of Engine to Car. For example, you
might define a new subclass of Engine called ElectricEngine that you want Car
to use. If you use DI, all you need to do is pass in an instance of the updated
ElectricEngine subclass, and Car still works without any further changes.

●
There are two major ways to do dependency injection in Android:

Constructor Injection. This is the way described above. You pass the
dependencies of a class to its constructor.

● Field Injection (or Setter Injection). Certain Android framework
classes such as activities and fragments are instantiated by the
system, so constructor injection is not possible. With field injection,
dependencies are instantiated after the class is created. The code
would look like this:

●

●

In all the examples above we did the dependency injection manually

Automated dependency injection
In the previous example, you created, provided, and managed the
dependencies of the different classes yourself, without relying on a library. This
is called dependency injection by hand, or manual dependency injection. In
the Car example, there was only one dependency, but more dependencies and
classes can make manual injection of dependencies more tedious. Also When
you're not able to construct dependencies before passing them in — for
example when using lazy initializations — you need to write and maintain a
custom container (or graph of dependencies) that manages the lifetimes of
your dependencies in memory.

Look at this example to see fully manual dependency injection
https://developer.android.com/training/dependency-injection/manual

There are libraries that solve this problem by automating the process of
creating and providing dependencies. They fit into two categories:

Reflection-based solutions that connect dependencies at runtime.
Example of this solution is using the Guice library.
Static solutions that generate the code to connect dependencies at
compile time. Example is using Dagger2 library which is now managed
by Google and a jetpack composed library called Hilt.

Dagger is a popular dependency injection library for Java, Kotlin, and Android
that is maintained by Google. Dagger facilitates using DI in your app by creating
and managing the graph of dependencies for you. It provides fully static and

compile-time dependencies

Use Hilt in your Android app
Hilt is Jetpack's recommended library for dependency injection in Android. Hilt
defines a standard way to do DI in your application by providing containers for
every Android class in your project and managing their lifecycles
automatically for you.

Hilt is built on top of the popular DI library Dagger to benefit from the compile
time correctness, runtime performance, scalability, and Android Studio support
that Dagger provides.

Using Hilt

First, add the hilt-android-gradle-plugin plugin to your project's root
build.gradle file:

 dependencies {
 ...
 classpath 'com.google.dagger:hilt-android-gradle-plugin:2.38.1'
 }

Then, apply the Gradle plugin and add these dependencies in your app/
build.gradle file:
id 'kotlin-kapt'
id 'dagger.hilt.android.plugin'

dependencies {
 implementation "com.google.dagger:hilt-android:2.38.1"
 kapt "com.google.dagger:hilt-compiler:2.38.1"
}

Make sure Java 8 is enabled (Hilt uses Java 8) - in you app Gradle file

First step
Extend the Application class and annotate it with @HiltAndroidApp this
triggers Hilt's code generation, including a base class for your application that
serves as the application-level dependency container.

●

●

●

●

●

●

●

Don’t forget to add the application name to the manifest file

This generated Hilt component is attached to the Application object's lifecycle
and provides dependencies to it. Additionally, it is the parent component of the
app, which means that other components can access the dependencies that it
provides.

Once Hilt is set up in your Application class and an application-level component
is available, Hilt can provide dependencies to other Android classes that have
the @AndroidEntryPoint annotation:

Hilt currently supports the following Android classes:
Application (by using @HiltAndroidApp)
ViewModel (by using @HiltViewModel)
Activity
Fragment
View
Service
BroadcastReceiver

If you annotate an Android class with @AndroidEntryPoint, then you also must
annotate Android classes that depend on it. For example, if you annotate a
fragment, then you must also annotate any activities where you use that
fragment. Classes that Hilt injects can have other base classes that also use
injection. Those classes don't need the @AndroidEntryPoint annotation if
they're abstract.

@AndroidEntryPoint generates an individual Hilt component for each
Android class in your project. It turn them into dependency containers.

Define Hilt bindings
To perform field injection, Hilt needs to know how to provide instances of the
necessary dependencies from the corresponding component. An Hilt binding
contains the information necessary to provide instances of a type as a
dependency.

One way to provide binding information to Hilt is constructor injection. Use the
@Inject annotation on the constructor of a class to tell Hilt how to provide
instances of that class.

Our full code will look like this now:

Here @Inject gives Hilt access to the the necessary constructors meaning
it can generate instances of both Car and Engine. If Engine is a parameter
of the Injected constructor then Hilt must also know how to create
instances of it (the Engine class).

Instances that Hilt knows how to create go by the name bindings. So Car
and Engine are bindings.

And the Activity which is holding the Injectable Fields will eventually look like
this:

To obtain dependencies from a component, use the @Inject annotation to
perform field injection.
Here the @Inject annotation goes by a different meaning. Here it means the car
field is injectable field. Injectable means that Hilt can supply the instantiated
dependencies to it.
Please note that Fields injected by Hilt cannot be private. Attempting to inject a
private field with Hilt results in a compilation error.

Hilt modules
Sometimes a type cannot be constructor-injected. This can happen for multiple
reasons. For example, you cannot constructor-inject an interface. You also
cannot constructor-inject a type that you do not own, such as a class from an
external library. In these cases, you can provide Hilt with binding information by
using Hilt modules.

A Hilt module is a class that is annotated with @Module it informs Hilt how to
provide instances of certain types. you must annotate Hilt modules with
@InstallIn to tell Hilt which Android class each module will be used or installed
in. This determine the dependency lifetime scope.

If you want the dependency to exist in all of your app activities use
@InstallIn(ActivityComponent::class). Later we will see all the available
scopes.

Hilt can’t generate a constructor for an interface. Instead, provide Hilt with the
binding information by creating an abstract function annotated with @Binds
inside a Hilt module.

●

●

The @Binds annotation tells Hilt which implementation to use when it needs to
provide an instance of an interface.
The annotated function provides the following information to Hilt:

The function return type tells Hilt what interface the function provides
instances of.
The function parameter tells Hilt which implementation to provide.

Therefor our code will look like this:

In our example when someone requires a Recyclable then we will return an
Engine

And in the Main Activity we change the code like that:

Now what happens if we want different implementation for car and for engine. If
we try to add the following function to out Module and run your code.

And of course make car also implement the Recyclable interface

We will get the following error when we try to execute our code:

Hilt doesn’t know which implementation to use and We need to differentiate
them somehow.
This is why we have the @Qualifier Annotation

Create the following Annotation Quailifiers next to you Module they will use you
to differentiate the implementations

And add the Qualifier next to the implementations like this:

Also add them next to the reference definition in you MainActivity file

Interfaces are not the only case where you cannot constructor-inject a type.
Constructor injection is also not possible if you don't own the class because it
comes from an external library (classes like Retrofit or Room databases), or if
instances must be created with the builder pattern.

We can tell Hilt how to provide instances of a type by creating a function inside
a Hilt module and annotating that function with @Provides.

Lets take for example a simple library called Gson to covert string to json and
vice versa

Add the following dependency to your project

 implementation 'com.google.code.gson:gson:2.8.6'

And create the following Gson module:

●

●

●

Through @Provides, the annotated function gives Hilt the following information:
The return type tells Hilt what type the function provides instances of.
The parameters tell Hilt the dependencies required to provide the
type. In our case, there are none.
The function body tells Hilt how to provide an instance of the
corresponding type. Hilt executes the function body every time it
needs to provide an instance of that type.

In the MainActivity add the following code

We have successfully injected 3rd library dependency!

A bit more about @Binds and @Provides :

As you can see @Binds functions are abstract while @Provides functions have
a body. With @Binds the implementation is obvious. @Binds method can only
have a single parameter whose type is assignable to the return type.
@Provides method can have any number of parameters of any type.

More on @InstallIn
Now let’s look at the scope again, try writing the same lines in you Application
class. You will get an error!!

Do you remember the discussion on components? If you look at the
GsonModule component, it is installed in the ActivityComponent.class.
Therefore, it is only available during the lifetime of an activity rather than that of
the entire application.

For each Android class in which you can perform field injection, there's an
associated Hilt component that you can refer to in the @InstallIn annotation.
Each Hilt component is responsible for injecting its bindings into the
corresponding Android class.

The previous examples demonstrated the use of ActivityComponent in Hilt
modules.

Hilt automatically creates and destroys instances of generated component
classes following the lifecycle of the corresponding Android classes(for
example, all the activity components will be destroyed by hilt in the activity
onDestroy() method)

When it comes to classes such as Gson, Retrofit and Room database, we may
need to make them available to the entire application.

To correct this error, change the ActivityComponent.class to
SingletonComponent.class - The error is gone

But is the Gson object the same in MyApplication and MainActivity? No.

Scoping
Bindings in Hilt are naturally unscoped. This means that each time your app
requests the binding (the dependency), Hilt creates a new instance of the
needed type.

However, Hilt also allows a binding to be scoped to a particular component. Hilt
only creates a scoped binding once per instance of the component that the
binding is scoped to, and all requests for that binding share the same instance.

To ensure only one instance of Gson is available at a time, modify GsonModule
and add @Singleton annotation used to ensure that the generated instance is
the only one throughout the application’s lifecycle.

Because we scoped the GsonModule to the SingletonComponent using
@Singleton Hilt provides the same instance of GsonModule throughout the life

of the entire application.

ActivityScoped ensures that the instance is the same throughout the activity.
Same if we would have scoped any other adapter or module to the
ActivityComponent using @ActivityScoped, then Hilt would have provided the
same instance of that module throughout the life of the corresponding activity.

Please note that Scoping a binding to a component can be costly because the
provided object stays in memory until that component is destroyed.

To summarize the interfaces and the 3rd library in oppose to interfaces or class
we own but can’t call their constructor - this it how to obtain a single instance
of the AnalyticSercive:

Scoping and ViewModels

Originally if no scoping is done then activity retain a new instance upon each
configuration change. Like this:

In Hilt this will look like this:

The AnalyticsAdapter a scoped here to the Activity. When a new instance of
ExampleActivity is created (e.g. the activity goes through a configuration
change), a new instance of AnalyticsAdapter will be created.

To get the same instance we can achieve that through view models or with Hilt
(with or without ViewModels)

With View Models

With Hilt (No ViewModels) we use @ActivityRetainedScoped that scope
AnalyticsAdapter to the ActivityRetainedComponent which also survives
configuration changes

With Hilt and View Models - There is one major difference:

First, A Hilt View Model is a Jetpack ViewModel which his constructor injected
by Hilt. To enable injection of a ViewModel by Hilt use the @HiltViewModel
annotation:

SavedStateHandle is a default binding available to all Hilt View Models (more on
default bindings later on), while AnalyticsAdapter is a dependency which want
to provide to the View Model. This way of passing parameters to the view
model is the preferred way over the Factory methods.
But before we discuss this dependency scope let’s look at how the activity or
fragment retain an instance of that ViewModel.

The activity or fragments annotated with @AndroidEntryPoint can get the
ViewModel instance as normal using ViewModelProvider or the by
viewModels() KTX extension:

Only dependencies from the ViewModelComponent and its parent components

can be provided into the ViewModel.
All Hilt View Models are provided by the ViewModelComponent which follows
the same lifecycle as a ViewModel, i.e. it survives configuration changes. To
scope a dependency to a ViewModel use the @ViewModelScoped annotation.

If we own the class it will look like this:

If it is from a library then it will probably look like this:

A @ViewModelScoped type will make it so that a single instance of the scoped
type is provided across all dependencies injected into the Hilt View Model.
Other instances of a ViewModel that requests the scoped instance will
receive a different instance.

If a single instance needs to be shared across various View Models then it
should be scoped using either @ActivityRetainedScoped or @Singleton.

For example, we can scope a dependency to be shared within a single
ViewModel as such:

Or another example:

Since UserInputAuthData is scoped to the ViewModel, RegistrationViewModel
and LoginViewModel will receive a different instance of UserInputAuthData.
However, the UseCase dependencies of each ViewModel use the same instance
that its ViewModel uses.

Predefined qualifiers in Hilt
Hilt provides some predefined qualifiers. For example, as you might need the
Context class from either the application or the activity, Hilt provides the
@ApplicationContext and @ActivityContext qualifiers.

This is because Each Hilt component comes with a set of default bindings that
Hilt can inject as dependencies into your own custom bindings.

Integration with the Jetpack navigation library
Add the following additional dependencies to your app Gradle file:

 implementation("androidx.hilt:hilt-navigation-fragment:1.0.0")

If your ViewModel is scoped to the navigation graph, use the
hiltNavGraphViewModels function that works with fragments that are annotated
with @AndroidEntryPoint.

See a nice example https://stackoverflow.com/questions/66497047/hilt-doesnt-
inject-a-scoped-viewmodel

Inject dependencies in classes not supported by Hilt
Hilt comes with support for the most common Android classes. However, you
might need to perform field injection in classes that Hilt doesn't support.

In those cases, you can create an entry point using the @EntryPoint annotation.
An entry point is the boundary between code that is managed by Hilt and code
that is not. It is the point where code first enters into the graph of objects that
Hilt manages. Entry points allow Hilt to use code that Hilt does not manage to
provide dependencies within the dependency graph.

or example, Hilt doesn't directly support content providers. If you want a
content provider to use Hilt to get some dependencies, you need to define an
interface that is annotated with @EntryPoint for each binding type that you
want and include qualifiers. Then add @InstallIn to specify the component in
which to install the entry point as follows:

To access an entry point, use the appropriate static method from
EntryPointAccessors. The parameter should be either the component instance
or the @AndroidEntryPoint object that acts as the component holder. Make
sure that the component you pass as a parameter and the EntryPointAccessors
static method both match the Android class in the @InstallIn annotation on the
@EntryPoint interface:

In this example, you must use the ApplicationContext to retrieve the entry point
because the entry point is installed in SingletonComponent. If the binding that
you wanted to retrieve were in the ActivityComponent, you would instead use
the ActivityContext.

Unit tests
Hilt isn't necessary for unit tests, since when testing a class that uses
constructor injection, you don't need to use Hilt to instantiate that class.
Instead, you can directly call a class constructor by passing in fake or mock
dependencies, just as you would if the constructor wasn't annotated:

Hilt testing guide
One of the benefits of using dependency injection frameworks like Hilt is that it
makes testing your code easier.
You can read more about testing with hilt here
https://developer.android.com/training/dependency-injection/hilt-testing

https://developer.android.com/training/dependency-injection
https://developer.android.com/training/dependency-injection/hilt-android

Full usage example of App Architecture, Retrofit,
Room, Hilt and Coroutines.

Download the Starter Files for this project here
https://drive.google.com/file/d/1yM2Y3lc4S20mAoiCWNKrAisoT-Jg07q4/view?
usp=sharing

Download the starter Project from here (Optional - not necessary for this
tutorial):
https://drive.google.com/file/d/1i0wSsU6s9mqnaePDqYl8Ls0MfB6GUBCS/
view?usp=sharing

Download the Full App Created in this Guide:
https://drive.google.com/file/d/1sl_T-_zr8w0z7riMyvpNlReB8WcYN5N6/view?
usp=sharing

Download the Generic useful classes to use in other projects:
https://drive.google.com/file/d/1fpH2qcyI0020pY0ZbB1yN69wmU0xT_NG/view?
usp=sharing

We are going to put it all together now for building a clean architecture app that
will communicate with both local and remote databases and will use Hilt
dependency injection library for reducing boilerplate code.

Before we begin diving into our code let’s look at the remote database. We will
use one of the most Common web service for testing: the rick and morty API.
You can explore it here https://rickandmortyapi.com just visit the docs and look
the REST API, we have the characters, locations and episodes data, we will get
all the characters and show them nicely in a RecyclerView and by clicking on
each character we will show it in details.

So our base url will be:

https://rickandmortyapi.com/api

And we will access the /character resource

Lets look at the retuned JSON:
You can use this site for json formatting - just paste the full url
https://jsonformatter.curiousconcept.com
https://rickandmortyapi.com/api/character

Even though we need only the JSON objects in the result array in order to
simplify the Gson Builder factory we will create data classes for the character,
the info object and the root object which will contain a list of characters and the

total info.

Step 1 - Project Setup
Go ahead open a new Android Studio Project and create the following project
structure:

In our Project we will divide our project to:
data - it will include our models, local and remote database data operations
and repositories.
di - it will include all of our injected dependencies and we will to that with the
help of Hilt.
ui - all of out UI related components and their ViewModels (yes view models
goes there).
utils - all of the helper classes and project related general functions.
Go ahead and create the packages mentioned above and their sub folders.

Move your MainActivity to the ui package and in the root package create your
Application class for Hilt and add it’s name to your manifest file.

In the end it should look like this:

Also in the utils package a create Constants class to hold out Base url on which
we will add the specific resource for each GET call (remember to add the / at
the end of the path:

If you are already in your Manifest don’t forget to the add the Internet install
time permission used for our retrofit calls:

Now let’s go to our project and app Gradle files and get all the 3rd party
libraries dependencies:

In your project Gradle file we just need to add Hilt:
dependencies {
 ...
 classpath 'com.google.dagger:hilt-android-gradle-plugin:2.38.1'
 }

In your app Gradle file we need add the plugins:

id 'kotlin-kapt'
id 'dagger.hilt.android.plugin'

And a whole bunch of stuff under our dependency :

//Retrofit
implementation 'com.squareup.retrofit2:retrofit:2.9.0'
implementation 'com.squareup.retrofit2:converter-gson:2.9.0'

//Lifecycle
def lifecycle_version = "2.3.1"
implementation "androidx.lifecycle:lifecycle-viewmodel-ktx:$lifecycle_version"
implementation "androidx.lifecycle:lifecycle-livedata-ktx:$lifecycle_version"
implementation "androidx.lifecycle:lifecycle-common-java8:$lifecycle_version"
implementation 'androidx.lifecycle:lifecycle-extensions:2.2.0'

//Kotlin Coroutines
def coroutines_android_version = '1.5.2'
implementation "org.jetbrains.kotlinx:kotlinx-coroutines-core:
$coroutines_android_version"
implementation "org.jetbrains.kotlinx:kotlinx-coroutines-android:
$coroutines_android_version"

//Hilt
implementation 'com.google.dagger:hilt-android:2.38.1'
implementation "androidx.hilt:hilt-lifecycle-viewmodel:1.0.0-alpha03"
kapt 'com.google.dagger:hilt-android-compiler:2.38.1'
kapt "androidx.hilt:hilt-compiler:1.0.0"

//Room
def room_version = "2.3.0"
implementation "androidx.room:room-runtime:$room_version"
implementation "androidx.room:room-ktx:$room_version"
kapt "androidx.room:room-compiler:$room_version"

//Navigation
def nav_version = "2.3.5"
implementation "androidx.navigation:navigation-fragment-ktx:$nav_version"
implementation "androidx.navigation:navigation-ui-ktx:$nav_version"

//Glide
implementation 'com.github.bumptech.glide:glide:4.12.0'
kapt 'com.github.bumptech.glide:compiler:4.12.0'

Go ahead now sync your project

Step 2 - Create your models
Create all the data Classes we have talked about in the beginning.
When you create your models do it carefully and look at the Json response.
You don’t have to include properties for each JSON field in the response but
why not, maybe we will need it, if you are lazy we only need the id, name,
gender, status and species but make sure you use the exact same names for
the properties as in the response or retrofit won’t be able to create your
objects.
If for some reason you want a different name you can use
@SerializedName([JSON field name])- same as @ColumnInfo we have seen in
Room.

One last thing pre-plan your room annotations in your Data classes

 In the end it should look like this (for this project the classes don’t have to be
data class but it is wiser):

Step 3 - Adding Hilt
Let’s start with Hilt. Why do we need Hilt you can ask but think of all the
dependencies we have here. The view Model will need the repository, the
repository will require both the local and the remote database. Each database
requires his service and so on. This is just a simple app, the more complex it
gets the more dependencies it has.

This is where Hilt comes to rescue, we can auto inject each dependency and
not have to worry about writing unnecessary code. We just need to tell Hilt
where we need a dependency and where to get it from, it will connect the dots
and take care of the object creation and their lifecycles.

First add the @HiltAndroidApp to your application file

Create both of your fragments and add to them @AndroidEntryPoint annotation
meaning they can get the Hilt dependencies.

Also create their View Models and add the @HiltViewModel and the @Inject
constructor

Now since we don’t own the retrofit classes and we can’t created an Injected
constructor we must build the Retrofit module inside our di package. There we

must annotate by @Provides each of the dependencies we need to provide, this
will be our bag of dependencies. The class will be installed in the
SingletonComponent, meaning it will be available for all of the app. We also use
the @Singleton annotation in cases where we want only one instance of the
provided dependency. For now we just add a function that returns a single
instance of the retrofit and also his constructor’s Gson dependency.

One more thing. I want to explain more about the Gson. Here we are not doing
any specific deserialization meaning our response JSON object will be directly
mapped into the corresponding object - the json object has two keys one for
the info and one for the result and so does the Kotlin data class. But if we
wanted to map the result to a character class without the extra classes on the
way then we would have needed to go into the root object get the array under
the key results and fit each json object there to the character class - this is
custom deserialization. For this we would have need to pass a custom Gson
converter factory and not the standard one like we did here.

A nice and very simple tutorial on how to do this can be found here:
https://www.woolha.com/tutorials/retrofit-2-define-custom-gson-converter-
factory

We will get back to this module and add provider functions to the rest it’s of the
data parts. But now let’s go ahead and create them, only then we can supply
dependency for them.

Step 4 - Room Database
We will start From the easy part - Room Database

Besides the retrofit work, we are also interested in storing and getting data
from a local database. We need it in order to show at least something to our
users when they are out of connection or before the data is fetched - with slow
connection. We are going to use it as a cache for our system.

Add your Dao and create functions to retrieve a character by id and all
characters, and functions to insert a character or character list. Please make
the insert functions suspended and the only thing we need is to execute it from
a coroutine scope. Room will take care of their implementation including their
background capabilities. Please note that the fetching functions don’t have to
be suspended because LiveData is already asynchronous - it is working on the
IO Dispatchers.

Our Dao should look like this:

And our app database will look like this

Please note:
fallbackToDestructiveMigration() - tells Room that if the database version
had changed and No Migration guide is found not to throw an exception but
instead delete the old table and recreate it.

Step 5 - Retrofit calls
We are all done with the caching of the data and move to fetching. Let’s create
our data fetching service (same as the Dao in Room). This interface will be
called CharacterService and it will contain two functions: both annotated with
@Get(“[path]”), both suspended meaning they can be executed on a
background thread and both return the retrofit Response object with the Kotlin
class that that json object should be parsed to. Amazing what could be
achieved in a single line of code!
The code should look like this:

Note:
You can use The @Query annotation to add the functions parameters and
append them as the Query parameters.
For example:
If we want to add to the base URL this path “/maps/api/gecode/json?” With that
parameters: “address=90210&sesnsor=false”
We will create the following Get call

 @GET("/maps/api/gecode/json?")

 suspend fun getLocationInfo(@Query("address") String
zipCode,@Query("sensor") boolean sensor);

Retrofit also offers a returned Call that can be executed async but here the
function itself is suspended so we don’t need to use retrofit’s background
execution queue and execute Call on it.

The functions returns Response. When we invoke it we can check if it is
successful and it has a data that can be null for both cases and a message that
won’t be null if there was an error and in that case there is also his code. More
then that some exceptions can occur while executing the retrofit call (meaning
not getting the response at all).
It seems like allot of different branching when all we care about is Success,
Failure or Loading to be checked in a nicely organize when() {} clause. And we
are going to do allot of work to achieve that, but this work will done once for all
Requests. It will be Generic enough to serve us in every retrofit invocation.

First create your Wrapper class for the Response.
The base logic is to create a sealed Status object that works on a generic
covariance that will be its data. From this sealed class there will be three
derived classes: Success, Error (which will hold an additional error message)
and Loading. We will create the Resource class with Status as her property and
three Factory methods which we will create the suitable Response object with
each status option :

When we get an instance of this Resource wrapper class it will be very easy to
check:

More than that, because Status is sealed the compiler will warn us if we forget
to check any of it’s subclasses.

So the wrapper class is ready now we need to actually call the function and
wrap the Response with that Resource.
To do this in A Generic way we will create a base class with getResult function
that will get the Response and return the appropriate Resource. Then we will
inherit from that generic class to a specific data source for our service and call
the generic getResult with functions from our service. Our data source will have
an @injected constructor that will get the specific service and create wrapper
functions for each of the service function. Don’t worry about the injection we
will provide the injected service in our AppModule

While we created our Resource classes in the util package generate this two
classes in the remote db folder.

 our new added code will look like this:

●

●

●

●

Step 6 - Repository
The very last thing we have to do in terms of our data is to create the
Repository.
First let’s explain our policy for local and remote data fetching:

First we need to let our LiveData know that we are looking for the
Character, so that should be the LOADING state.
Then, we would like to get that character from the local data source,
because it is faster than getting it from the internet. If it finds it, we are
changing the state to a SUCCESS
Regardless of the result of the local database operation, we would
want to keep our app synched, so we are fetching the characters from
the internet as well (but remember that the ui thread won’t be blocked
and the user can already see the correct characters information).
Finally, we need to save our result from the remote call in the local
database, in order to keep it updated.

To achieve that we can use a Generic get function that receives three functions
as parameters: One for local fetching, one for remote fetching and one for
saving data. Then we will use the LiveData coroutine builder to create scope for

running our suspended functions synchronously and get back the result as a
LiveData object (please note that we need to tell the LiveData builder we want
to run our job on the Dispatchers.IO because this default LiveData scope is the
Main UI thread where emit is called). We are creating a scope where the
suspended functions can wait for each other although they run in a background
thread, and updating the data they fetched using emit which is called on the
Main UI thread for anyone who is observing these returned LiveData. You can
also emit multiple values from the block. Each emit() call suspends the
execution of the block until the LiveData value is set on the main thread.
You can read more here:
https://developer.android.com/topic/libraries/architecture/coroutines#livedata

We will use both emit() and emitSource() function from within the LiveData
scope. These functions defined by the LiveDataScope interface and are used to
update the LiveData value or it’s source. Meaning emit will be used to update
the LiveData stored value and emitSource the LiveData itself and then each
change will be auto updates by the LiveData. These are both suspended
functions meaning it will pause the scope until the LiveData is updated.
Remember: Inside a suspended function, calls to other suspended functions
behave like normal function calls. We stop and wait. We work on the same
coroutine that can be stoped and continued.

So our helper function will look like that (put it a general DataFunction Kotlin file
located in the util package):

If you are wondering why you see two generics it is because we need to
distinguish the value stored in the LiveData from the value retuned by the call,
for example in a single function call we are getting all the characters from the
remote db we get a Response<AllCharacters> while from the local db we get
LiveData<List<Character>>. The A represent the retrofit’s generic while the T is
the Room generic.

And last but not least we will write the Character Repository. It’s @Injected
constructor will get the local and the remote services by Hilt and will use this
function above to do all the work. Please note that we use the @Singleton
scope so one instance of the repository is for all of the app. This repository will
be auto created and injected later on to our view model.

Add put them all together in you AppModule dependency bag
Remember if you @provide a class then all of its constructor parameters also
have to be provided!
Our final AppModule should look like that:

1.

2.

When we want to create our Retrofit service to execute our queries we can call
create on our retrofit instance. It will create an implementation of the API
endpoints defined by the service interface.
Please also note that we are using @ApplicationContext that allows hilt to
provide application context without having to explicitly specify how to obtain it.
And also note that we don’t need to provide the CharacterRepository and the
CharacterRemoteDataSource since we they have the @Inject constructor
meaning Hilt can generate these classes without the need to explicitly tell him
how.

Thats It for our data and the dependencies! Now all we have to do is the easy
part UI!

Step 7 - UI
First copy the four xml files found on the starter into your res/layout folder
Please note a few things:

In the activity_main we have a custom tool bar this for setup with the
navigation component
Still in activity_main We Have the FragmentContainerView please
notice his id and the nav graph id - when you create the nav graph use
this id or change it here to what you will use

Go ahead and add your navigation graph to your resources with name
corresponding the the Container mentioned above. Add both of your fragments
and create an action between them like here:

Add your view binding to the app Gradle file
viewBinding {
 enabled = true
}

Define your view binding and pass the root view.
Get your Navigation controller And connect you toolbar to your navigation
component for the purpose of showing the current fragment label in the app
bar and navigating back. Your MainActivity should look like that:

Let’s start with all the characters and their RecyclerView adapter - use Glide
for the pictures and also create an interface to pass the item click to the
fragment who will implement the interface. When clicked pass the character id.
In this example I prefer to get the listener in the adapters constructor and only
it. The list of characters will be updated through setCharacters function you will
add to the adapter.

Here is the full Adapter code:

Now for the final stage: Your Fragments and their View Models!

Let’s start with AllCharacters - The ViewModel should supply the list of
characters. All it needs in its Injected constructor is the repository. We will
create a single characters property and get it from the repository. This will be

the observable LiveData.

In the Fragment get your view bindings. Don’t forget that the fragment outlives
it’s views so release your binding in the onDestroyView. Don’t worry about the
hassle, in the end you will get a property delegate that does this automatically
while observing the corresponding fragment’s lifecycle events.

Create the adapter and implement his Listener, the item click should perform
the navigation’s one and only pre-made action and pass a bundle containing
the supplied character id.
Get the RecyclerView set it’s layout manager and the created Adapter above.
Now observe the characters from your view model and upon invocation check
your status. in case of loading show the progress bar, In case of Success hide it
set the adapter’s characters, and in case of an error hide it and prompt the
error message in a Toast.

Our very last part of this very long journey is the detailed character fragment
and it’s View Model.
First, our View model should get the repository and get a character by it’s id.
Now this is a tricky part. Think a little about how to solve this.

First we need a character property so we can observe it. But what will trigger
the event?

We will create a character look up as a transformation of the id.
The id will have a public set function that we will invoke from the fragment.
The character field will be defined as a transformation of the id. As long as your
app has an active observer associated with the character field, the field's value
is recalculated and retrieved whenever id changes.

There is a reason why we use the internal _character - it is a mutable live data
and therefore can be dangerous to expose that is why we will return only
LiveData with a public character

For more reading on transformations:
https://developer.android.com/topic/libraries/architecture/
livedata#transform_livedata

And that’s it for the View Model

As for the fragment do the same binding as before and when your view is
created get the id from the arguments, remember to deal nicely with null, and
set the value in the view model value, this will trigger your character observer
and upon invocation will update the ui!

One last thing I have promised for a simpler solution to the fragment view
binding.

Take AutoClearedValue.kt and copy it into your utility package. Until google will
add this property delegate we will use this. This property delegate keeps track
of the fragment lifecycle and upon destruction of the fragment update null
value in the property

Use the by autoCleared() for your binding properties and remove the _binding
and its related code.

Application Components Part 1 - BroadcastReceivers
and AlarmManager

Download the Components Intro PDF:
https://drive.google.com/file/d/1JUKSJZweYdXwtLvNGm1NUeSsw5mtHGQr/
view?usp=sharing

Download the Broadcast Receivers PDF Guide:
https://drive.google.com/file/d/1Ba_I7jxjbIGlKueFyQOu3Fq3LsSDT0cN/view?
usp=sharing

Download the AlarmMananger PDF Guide:
https://drive.google.com/file/d/1NuhllQqgeqHWJqJhP8s5F5nmlKbaE8g6/view?
usp=sharing

Download the Application Components Starter Project:
https://drive.google.com/file/d/1AM06Rq1-6RJdoObCMorXBijG7ZluV0ES/view?
usp=sharing

Download the Application Components 1 final App
https://drive.google.com/file/d/1d4dPRnzxqFPrAkXp8E5YAoBD8gmwFj7I/view?
usp=sharing

Written by Marko Katziv and Eran Katsav ©

Introduction
8LMW�HSGYQIRXƅW�QEMR�WYFNIGXW�EVI Broadcast component, AlarmManager,
JobScheduler, Service component and the WorkManager API. We will cover these
subjects by writing an app in Kotlin that follows the Android 8.0+ limitations. We will
use various features and libraries such as view binding by delegation, Navigation
component and different types of coroutines. implementing these features helps us
write an app that is maintainable, reusable, and readable.

This document comes with a Kotlin project starter that contains pre-existing code
and resources. In the course of the tutorials, we will implement the necessary code
for making the app work, But before we dive in, we are going to go over the important
parts of the existing code.

enjoy

Written by Marko Katziv and Eran Katsav ©

Pre Ɓ existing code
View binding by delegation
To make the code concise, we are going to use the Kotlin Delegated property.

³,Q software engineering, the delegation pattern is an object-oriented design pattern that
allows object composition to achieve the same code reuse as inheritance�´

(Wikipedia)

In our context, we can use delegation Instead of inheritance to reuse the
ZMI[0MJI']GPI3[RIVƅW onDestroy() method and null out the binding reference.

Kotlin supports this design pattern by making use of the ƈbyƉ�keyword �EW�MR�ƈTVSZMHIH�
F]Ɖ
. This keyword means that the get() and set() methods of a property are implemented
by a different class. Essentially, we are redirecting the work that needs to be done to a
different part of the code. An analogy for this concept can be an employee giving his
assignment to someone else.

0IXƅW take a look at the following code:

private var _binding: FragmentBluetoothBinding? = null
private val binding get() = _binding!!

override fun onDestroyView() {
 super.onDestroyView()
 _binding = null
}

In each fragment we need to write these lines manually. Instead, we can create a new
class and observe the fragmentƅW�ZMI[lifecycle. Once it gets to onDestory() , we null out
the binding. The following line of code is an example of using Kotlin Delegation property.

 // view binding by delegation
 private var binding: FragmentBluetoothBinding by autoCleared()

Every fragment in the application uses this feature, and there is no need to re-
write it.

https://developer.android.com/reference/androidx/lifecycle/LifecycleOwner

Written by Marko Katziv and Eran Katsav ©

AppUtils class
For this project we have prepared a utility class that contains the following methods:

playsound(context: Context) Ɓ plays the system default notification ringtone.

makeToast(context: Context, msg: String) Ɓ shows a toast with the given message.

notify(context: Context, title: String, msg: String, iconRes: Int? = null) Ɓ
shows a notification. If no icon was set, then it will use the ic_favorite icon Ɓ the default
icon for our notifications.

showSnackbar(view: View, data: String) Ɓ method for showing a snackbar for a short
amount of time. We pass a view so we can find its parent in order to display it on the screen,
and a string as content.

Use these functions when needed through the AppUtils class. For example:

AppUtils.makeToast(�������ř�ũ�����������������Ūƀ

������ſ�������ř�ũ������������Ūř�ũ���Ũ�����������������ŠŪř��Ŝ��������Ŝ���ƀ

We will also add another method for creating a notification channel. More on that later
in the AlarmManager section.

Written by Marko Katziv and Eran Katsav ©

Android Notifications
A notification is a message that Android displays outside your app's UI to provide the
user with reminders, communication from other people, or other timely information
about events in your app. Users can tap the notification to open your app or take an
action directly from the notification.

A� basic notification contains an icon, title, and a small amount of content. In this small
part of the tutorial, we will go over creating a notification. To get started, We need the
NotificationCompat.Builder. We use the compatible version to support devices with
lower versions. The following code is already present in the project.

In order to build a notification we need:

x A title.
x The message (The body of the notification).
x An icon Ɓ In the method above, if no icon was passed, than it uses the

ic_favorites drawable.
x Priority Ɓ The importance of notification (explained underneath).

 Android 8.0+ Notification Limitations:

Beginning with Android 8.1 (API level 27), apps cannot make a notification sound more
than once per second. If your app posts multiple notifications in one second, they all
appear as expected, but only the first notification per second makes a sound. Notice
we also provide a notification channel. This is part of the Android 8.0 updates that will
be covered during this course.

Written by Marko Katziv and Eran Katsav ©

Message Importance Priority

Android uses the priority parameter to determine how much the notification should
interrupt the user both visually and audibly. The higher the importance, the more
interruptive it will be. The following are the supported levels:

Custom Notification View

Android Provides different templates with different actions for notifications, that allows
us to achieve complex interactions with little effort. For example, Use the
MessagingStyle class to display text messages.

However, if the system templates donƅt meet your needs, you can provide you own
layout. After you create the layout, instead of calling methods to set the title and the
body, call the setContent() method. This method receives our package name and
RemoteView.

https://developer.android.com/reference/androidx/core/app/NotificationCompat.MessagingStyle

Written by Marko Katziv and Eran Katsav ©

Navigation component
In 2018, Google introduced a new architecture component as part of the Android
Jetpack library. By using this component, we can manage the navigation of the
fragments back and forth within a single XML file, making it easy to maintain the app
navigation.

The navigation component uses a navigation resource file to represent the screens
JPS[�EW�E�KVETL��8LI�KVETL�GSRXEMRW�EPP�XLI�ETTƅW�HIWXMREXMSRW (fragments and
activities) along with their animations and pop behavior. Instead of using a
fragmentManager with a fragmentTranscation, we will handle the transactions in the
navigation component, and perform a navigation action when called.

The dependencies, and the navigation graph is already included in the project, no
need to re- write it

Written by Marko Katziv and Eran Katsav ©

Broadcast receivers
Broadcast receivers act like car antennas. Just like antennas can be configured to
receive a specific frequency and listen for a radio station, a broadcast receiver can be
configured to receive a specific intent action.

A broadcast is an event that the Android system can send when events occur.��By
registering to these events, we can activate our own methods and components. For
example, the Android OS triggers an event when the screen turns on and off, and by
setting up a broadcast receiver, [I�GER�TPE]�E�RMGI�VMRKXSRI�IZIV]�XMQI�XLI�WGVIIRƅW�
status changes.

We can also make a custom broadcast and define it to be exclusive to our app so
GSQTSRIRXW�SYXWMHI�SJ�SYV�ETT�[SRƅX�FI�EFPe to receive it. That way we can create this
TVMZEXI� ƈQIWWEKI�FSEVHƉ� JSV�SYV�ETT�ERH�HIPMZIV�QIWWEKIW� JVSQ�SRI�GSQTSRIRX� XS�
another. In general, broadcasts are messaging components used for communicating
across apps when events of interest occur.

We can register for these kinds of events by setting up a broadcast receiver and
declare it in the manifest file, or register it dynamically in our code.

Note: The broadcast receiver works on the main thread. Broadcast receivers are
allowed to run for up to 10 seconds before the system will consider them as non-
responsive, and decide to terminate them. The main thread itself has a limitation of 5
seconds to be unresponsive, so if we opt out into a background thread, the 10 second
rule will apply.

Written by Marko Katziv and Eran Katsav ©

Bonus
Try in any app, to activate the Thread.sleep() function for 5-10 seconds. Then press
the different views in the UI. The app will not respond and after a while, it will simply
GVEWL�[MXL�E�QIWWEKI�XLEX�MXƅW�RSX�VIWTSRHMRK�

When there is too much work on the main thread, we will see a message in Logcat
from the Choreographer:

The Choreographer coordinates the timing of the UI Ɓ animations, input and drawings.
It does that by receiving timing pulses from the display system and then scheduling
work to be done for the next frame.

In the picture above, the choreographer outputs a warning that 611 frames were
skipped. Most devices have a refresh rate of 60 frames per second. So Basically the
ETT�WOMTTIH�EFSYX����WIGSRHW��8LEXƅW�XIVVMFPI��&I�E[EVI of where you work.

Implementation:
Before we start writing the Broadcast receivers, PIXƅW prompt the user to enable
Bluetooth. We will use an ActivityResultLauncher, through a suspendCoroutine. By
using this launcher, we can fire an ActivityResultContract, which is an abstraction for
the onActivityResult() method, that lets us handle the result in a clean and reusable
way. ActivityResultContracts is a class that contains a collection of contracts.

A contract can be thought of as an agreement between the class and the rest of the
system: how the user should interact with it, and what it promises back.

Moreover, we can even decouple the code responsible for managing the ActivityResult.
Meaning, our fragments and activities will be cleaner. By providing a reference to the
ActivityResultRegistry, we can register our callbacks from any class, instead of being
bound to register from a fragment or an activity. To register, use the register() method.
This method is actually called by registerForActivityResult() method.

We make sure to unregister the launcher when no longer needed.

https://developer.android.com/reference/androidx/activity/result/contract/ActivityResultContracts
https://developer.android.com/reference/androidx/activity/result/ActivityResultRegistry

Written by Marko Katziv and Eran Katsav ©

The project contains a BluetoothHandler class that registers for an
ActivityResultContracts that lets the users enable (or not) the Bluetooth component in
their phones. This method uses a suspendCoroutine to achieve that.

 suspend fun requestBluetoothActivation(): Boolean {

 return suspendCoroutine { continuation ->
 val enableBtIntent = Intent(BluetoothAdapter.ACTION_REQUEST_ENABLE)
 launcher = resultRegistry.register(
 BLUETOOTH_REQUEST,
 ActivityResultContracts.StartActivityForResult()
) { result ->
 continuation.resume(result.resultCode == Activity.RESULT_OK)
 }

 launcher!!.launch(enableBtIntent)
 }
 }

fun unregister() {
 launcher?.unregister()
}

BluetoothHandler.kt

Through the resultRegistry we use the register() method. We provide the
register() method with a key (BLUETOOTH_REQUEST) to identify the Bluetooth
enable request call. We also pass a contract (StartActivityForResult()), and
provide a callback to handle the results. We also need to unregister the launcher when
no longer needed:

override fun onDestroyView() {
 super.onDestroyView()
 permissionRequests.unregister()
}
BluetoothFragment.kt

Written by Marko Katziv and Eran Katsav ©

suspendCoroutine
This function was designed for conversion of callbacks into suspending functions, but
is rarely used since it exposes a Continuation object �XLI�XVMGO�FILMRH�XLI�ƈQEKMGƉ
. The
way functions suspend is by storing the state of a function within the continuation
object. The compiler creates a continuation type containing the fields of the function,
and changes the function signatures to accept a continuation object. This way we can
save XLI�JYRGXMSRƅW�WXEXI�ERH�EPPS[�MX�XS�VIWYQI�EX�E�PEXIV�XMQI�

This function does exactly what its name says. It suspends the coroutine that it was
called from (must be called from a CoroutineScope or another suspend function), and
provides a way to resume that function. So once we have the result from the
ActivityResultCallback, we can resume it by calling the 'SRXMRYEXMSRƅW�SFNIGX�resume()
method. The value we pass inside the resume() will be returned back.

8LEXƅW NYWX�WSYRHW�PMOI�E�GEPPFEGO�[MXL�I\XVE�WXITWƏ�FYX�[LIR�[I need to chain
asynchronous functions that use callbacks, we might find ourselves in a callback hell,
where each function is called inside the callback of the previous one. So
suspendCoroutine function enables us to connect callbacks and coroutines together,
making our code seem synchronous and easy to read.

Suppose we have 3 functions: wakeup(), doWork() and goToSleep(). Each of these
functions do some kind of asynchronous work and provide a callback to their result.
But they do not support suspend (plain Java / Android functions). Our goal is to make
them work sequentially: First we wake up, then we do some work, and only then we go
to sleep. We could start the doWork() method in the callback of the wakUp() method
and the goToSleep() method in the doWork() method, but that is as tedious as it
sounds, and would be hard to read and maintain.

The solution is to wrap each of these function in a suspendCoroutine, and call resume()
in their callback. We can even pass a value inside resume(). This will let us write code
in a clean way. No interfaces and no callbacks needed. Everything is under the hood and
we have a nice sequential code.

Written by Marko Katziv and Eran Katsav ©

0IXƅW�FIKMR the broadcast subject with a few Bluetooth related broadcasts and see how
we can register for these events. The events we are interested in are:

x ACTION_STATE_CHANGED
x ACL_CONNECTED
x ACL_DISCONNECTED

For now, we start with something simple, a ringtone when any of these broadcasts are
received.

The BroadcastReceiver

Create a new class inside the data.services.utils.receivers package and call it
BluetoothStateReceiver. In order to make this class a Broadcast receiver, we need
to inherit from the BroadcastReceiver class, and override the onReceive() method:

Note: when generating the onReceive() QIXLSH��XLI�TEVEQIXIVW�REQIW�[MPP�FI�ƈT�Ɖ�
ERH�ƈT�Ɖ��8LMW�MW�VIPEXIH�XS�XLI�GSQTMPIH�7(/�ZIVWMSR�MR�XLI�ETTW�KVEHPI�JMPI� If we
change the version to 30 and below, the parameters names will be normal. But for now,
You may change their names for readability purpose, but not their type.

;I�RIIH�XS�HMJJIVIRXMEXI�FIX[IIR�XLI�HMJJIVIRX�EGXMSRW�SYV�VIGIMZIV�VIGIMZIW��WS�PIXƅW�
write it first. We will write it inside a when block:

Written by Marko Katziv and Eran Katsav ©

PIXƅW�begin with the ACL_CONNECTED and ACL_DISCONNECTED first. These two
differentiate between a Bluetooth device connection and disconnection. For them,
[IƅVI�NYWX�KSMRK�to play a sound.

onReceive should look like this now:

Now we need to declare our receiver in the manifest file:
<receiver
 android:name=".data.utils.receivers.BluetoothStateReceiver"
 android:exported="true">
 <intent-filter>
 <action android:name="android.bluetooth.device.action.ACL_CONNECTED" />
 <action android:name="android.bluetooth.device.action.ACL_DISCONNECTED"/>
 </intent-filter>
</receiver>
android:name Ɓ the name of our receiver.

android:exported - If set to true, our receiver will be able to receive messages from
outside the app.

<intent- filter> - this filter declares which intents should be received by the receiver.

<action> - the action we would like to register

You can run the app now, and connect to a Bluetooth device, or disconnect from it. You
should hear a sound when connecting and disconnecting from a Bluetooth device.

Written by Marko Katziv and Eran Katsav ©

2S[�PIXƅW�LERHPI�XLI�ACTION_STATE_CHANGED. Write a handleStateChange() method
that will differentiate between BluetoothAdapter.STATE_OFF, and
BluetoothAdapter.STATE_ON. This function will get the context and the intent:

Notice we get the state from an EXTRA field inside the intent.

Now, inside the appropriate place, call the playsound().

Now we can easily handle the Bluetooth state. Call the handleStateChange() method
in the appropriate part of the onReceive() method. �LMRX��MXƅW�[LIVI�MX�WE]W�WXEXI�
GLERKIHƏ

onReceive should look like this now:

Written by Marko Katziv and Eran Katsav ©

(SRƅX�forget to add the action in our declared receiver inside the manifest:
<receiver
 android:name=".data.utils.receivers.BluetoothStateReceiver"
 android:exported="true">
 <intent-filter>
 <action android:name="android.bluetooth.adapter.action.STATE_CHANGED"/>
 <action android:name="android.bluetooth.device.action.ACL_CONNECTED" />
 <action android:name="android.bluetooth.device.action.ACL_DISCONNECTED"/>
 </intent-filter>
</receiver>

You can run the app now, and switch the Bluetooth on and off. If your device is running
Android version 11 and above, you will notice that the Bluetooth state change is not
received.

Like many other broadcasts, this broadcast will not be received if we register for it in
the manifest. In order to receive them, we need to register Dynamically. These
limitations began in Android 8 and got more strict in the next versions.

 Android 8.0+ implicit broadcast limitations:

Beginning with Android 8.0, the Android OS enforces additional limitations on manifest-
declared receivers. if our app targets Android 8.0 and above, [I�GERƅX�YWI�XLI�QERMJIWX�
to declare receivers for most implicit broadcasts. However, apps can continue to
register receivers for the broadcasts. There are some implicit broadcasts that are
exempted from this limitation, check the following link:

https://developer.android.com/guide/components/broadcast-exceptions

-J�ER�ETT�VIKMWXIVW�XS�VIGIMZI�FVSEHGEWXW��XLI�ETTƅW�VIGIMZIV�YWIW�VIWSYVGIW�ERH�
memory every time the broadcast is received. If we declare that receiver in the
manifest, then the ETT�HSIWRƅX�IZIR�LEZI�XS�FI�EPMZI�JSV�XLI�VIGIMZIV�XS�KIX�XVMKKIVIH.

0IXƅW�EWWYQI�XLIVI�EVI�QSVI�ETTW�MR�SYV�HIZMGI�XLEX�EVI�VIKMWXIVIH�XS�XLMW�FVSEHGEWX��
That means that whenever this broadcast is sent, all of the receivers inside the apps
(declared in manifest) will get triggered and consume a lot of resources. This is
SFZMSYWP]�E�TVSFPIQ��8LI�HIZMGIƅW�FEXXIV]�[MPP�FI�HITPIXIH�VIPEXMZIP]�JEWX��ERH�XLI�YWIV�
experience overall will be impacted badly.

For example, the ACTION_STATE_CHANGED event. We cannot register for it in the
manifest, but we can do it in Dynamic receivers. Dynamic receivers are registered using
an application context or an activity context. If we use the application context to

https://developer.android.com/guide/components/broadcast-exceptions

Written by Marko Katziv and Eran Katsav ©

register the receiver, our app receives broadcasts as long as the app is alive. That way,
we can register for any broadcast. If we use an activity context to register the receiver,
the app receives broadcasts until the activity is destroyed.

0IXƅW�KIX�back to our code, and register for the ACTION_STATE_CHANGED dynamically.
Inside the BluetoothFragment class, create an instance of the
bluetoothStateReceiver, and a handleBluetoothConnection() method. This
method should instantiate the instance of our receiver, and register it with an
IntentFilter. The constant we plant in the IntentFilter will enable us to register for the
ACTION_STATE_CHANGED broadcast.

Call this method from the onViewCreated in the BluetoothFragment class. Also, We
need to unregister the dynamic receiver in order to avoid memory leaks and unexpected
behavior

You may delete the STATE_CHANGED action from the receiver in the manifest, and run
the app. test the ACTION_STATE_CHANGED broadcast by switching the Bluetooth on
and off, you should hear a sound. If you quit the app and try to test it, nothing will
LETTIR�FIGEYWI�XLI�VIGIMZIV�MW�VIKMWXIVIH�ZME�SYV�EGXMZMX]ƅW�GSRXI\X, and the activity is
no longer alive.

Written by Marko Katziv and Eran Katsav ©

0IXƅW�handle another broadcast - the ACTION_AIRPLANE_MODE_CHANGED broadcast.

Create a new class and call it AirplaneModeReceiver. As before, we need to inherit
from the BroadcastReceiver class, and override the onReceive() method:

Like in the BluetoothStateReceiver class, we are going to play a ringtone when we
receive a broadcast. Get the action from the intent, and check that it matches the
relevant broadcast constant. If it does, call the playRingtone() method:

In order to show the Android 8.0 broadcast limitations, try to register the
airplaneModeReceiver in the manifest, and run the app:

2SXMGI�XLEX�MX�HSIWRƅX�[SVO��2S[�XLEX�[IƅZI�WIIR�LS[�[I�WLSYPH�VIKMWXIV�XLMW�OMRH�SJ�
FVSEHGEWX��PIXƅW�VIKMWXIV�ERH�YRVIKMWXIV�MX�dynamically. You may now delete the receiver
you just declared in the manifest.

Written by Marko Katziv and Eran Katsav ©

0IXƅW�XEOI�E�PSSO�EX�XLI�BluetoothFragment fragment. Create an instance of the
airplaneModeReceiver, and a handleAirplaneMode() method. This method should
instantiate the instance of our receiver, and register it with an IntentFilter. The constant
we plant in the IntentFilter will enable us to register for the
AIRPLANE_MODE_CHANGED broadcast.

We must unregister our receiver to avoid memory leaks and unexpected app behavior.
Unregister receivers when the app no longer needs them, or before the activity is
destroyed. In the onDestroyView() method in the same fragment, write the following:

After writing this method, call it from the onViewCreated() function of the
BluetoothFragment fragment.

Now, as long as our activity is alive, the receiver will get the broadcast and activate a
ringtone sound. Run the app and turn airplane mode on and off. 8LI�TLSRIƅW�HIJEYPX�
ringtone should be played. Try to exit the activity (we only have one so just exit the app
itself), and notice that it stopped working. This is because we registered this receiver
with XLI�EGXMZMX]ƅW�GSRXI\X��ERH�MXƅW�RSX�EPMZI�ER]QSVI�

Written by Marko Katziv and Eran Katsav ©

Custom broadcasts and LocalBroadcastReceivers
Custom broadcasts are messages that our app can send to the rest of the system, and
any app that has the action string can register for it. We use a custom broadcast when
we want our app to do something without explicitly launching an activity. For example,
we can send a broadcast when we want to notify other apps in the device that new data
has been received, so they would do something accordingly.

LocalBroadcast receivers are receivers for our app only. Unlike regular receivers, other
apps cannot send broadcast to this receiver. We use the LocalBroadcastManager to set
XLIQ�YT��8LMW�[E]��FVSEHGEWXIH�HEXE�[MPP�SRP]�FI�ZMWMFPI�XS�SYV�ETTƅW�components, and
MXƅW�GSRWMHIVIH�QSVI�IJJMGMIRX�FIGEYWI�XLIVIƅW�RS�-4'��MRXIV- process communication), so
less overhead of the broadcast.

For now, we will show a simple snackbar with the data we received in the onReceive()
method. The next part will show you how to write a local broadcast VIGIMZIV��MXƅW�NYWX�PMOI�
a normal receiver), and how to register it with a custom intent filter (and unregister as
well). We are going to send a custom broadcast to ourselves, and once we receive the
data in the receiver, we will pass it to our fragment, and show it in a snackbar. We use
two constants for this part: one for configuring the custom action string, and the other
as a key for our data. These constants are present in the BluetoothFragment.kt class,
and we will use them when needed.

Create a new class in the data.utils.receivers package, and call it
LocalBroadcastReceiver. Just like the previous receivers, we need to inherit from
BroadcastReceiver class, and override the onReceive() method:

In the onReceive() method, we need to check that the broadcast we receive matches
the custom action string that we will provide when we set the intent filter from the
BluetoothFragment.

Written by Marko Katziv and Eran Katsav ©

The CUSTOM_ACTION WXVMRK�MW�WMQTP]�E�WXVMRK�XLEX�GSRWMWXW�SJ�SYV�TEGOEKIƅW�REQIW��The
action string that we need to TVSZMHI�QYWX�FI�YRMUYI�WS�XLIVI�[SRƅX�FI�ER]�GSRJPMGXW�[MXL�
other receivers. we can use our package name for that. The DATA_EXTRA is also a string.
Both of them are inside a companion object in the BluetoothFragment.kt class:

Next, lets create an interface with one method in it. We will use this interface to send the
data to the BluetoothFragment. For that, we also have to pass a callback parameter in
our LocalBroadcastReceiver class. Change the LocalBroadcastReceiver class as
follow:

2S[�0IXƅW�[SVO�SR�XLI�JVEKQIRX�WMHI��'VIEXI�ER�MRWXERGI�SJ�XLI�0SGEP&VSEHGEWX6IGIMZIV�
inside the BluetoothFragment.kt class:

Written by Marko Katziv and Eran Katsav ©

We will instantiate and register it in a new method: handleLocalBroadcast(). In order
to pass the data to the fragment, we need to pass a callback object in the constructor of
the LocalBroadcastReceiver, and implement the onDataReceived() method we defined
in the interface. Inside the callback, call the AppUtils.showSnackbar() method, and
pass the data that we received in the callback:

Now we need to register and unregister our receiver. We will register the receiver in the
handleLocalBroadcast() method, using an intent filter with our custom action string,
and unregister it in the onDestroyView() method of the BluetoothFragment. Once done,
call the handleLocalBroadcast() from the onViewCreated() method

Before we continue any further, lets use some Kotlin goodness to make our callback
code more concise:

Written by Marko Katziv and Eran Katsav ©

Functional interface (SAM)
SAM (Single Abstract Method) were introduced in Kotlin version 1.4. this kind of
interface has a single abstract method in it, and is also called functional interfaces. By
using this type of interface with the help of SAM conversions, we reduce boilerplate
code, meaning we reduce code that we repeat a lot, while keeping it very much
readable. SAM conversions uses lambda expressions which is a block of code that can
be passed to another function. These type of functions that can accept functions as
parameters are called Higher Order Functions.

To declare a functional interface, we use the fun keyword before the interface. the
interface must contain only one abstract method��0IXƅW�GLERKI�SYV�GSHI�XS�YWI�XLI�
SAM interface. in the LocalBroadcastReceiver.kt class, add the keyword fun before the
interface keyword.

Now in the BluetoothFragment where we defined the callback, notice the compiler
warns us to convert the callback to a lambda expression:

Click on the Convert to lambda text. We now have a much more concise and easy to
read code. Lambda expressions are awesome!

Written by Marko Katziv and Eran Katsav ©

Back to the code! Now, 0IXƅW create a sendCustomBroadcast() method to send our
own broadcast for the local receiver. Inside the intent that we will use to send the
broadcast, ;I�[MPP�YWI�ƈDATA_EXTRAƉ (the same one as before) as the key for our data
MR�XLI�MRXIRXƅW�putExtra() method, ERH�ƈCUSTOM_ACTIONƉ (already present in the
GPEWW
�EW�XLI�OI]�JSV�XLI�MRXIRXƅW�EGXMSR. Once the intent is set, we will use the
LocalBroadcastManager to send the broadcast.

%PWS��PIXƅW�add a button with a listener that when clicked, it will send our custom
broadcast. The xml code is already in the project, just add the listener.

In the onViewCtread() method of BluetoothFragment:
binding.sendBroadcast.setOnClickListener {
 sendCustomBroadcast()
}

Run the app. Now, when we click on the send broadcast button, a snackbar will appear
with the value that we put inside the intent that we sent.

Written by Marko Katziv and Eran Katsav ©

Sending a broadcast with permissions
we can restrict broadcasts to apps that hold specific permissions. We can enforce
these restrictions on either the sender or the receiver of a broadcast. The permissions
are specified in the optional parameters of the sendBroadcast() method or the
sendOrderedBroadcast() method. That way, only receivers who have been granted the
permissions can receive the broadcast.

The following snippet (is not in the project) shows how to send a broadcast with
Bluetooth access permission:
val customIntent = Intent()
customIntent.apply {

 // Set a unique action string with our package name as a prefix.
 action = "com.myapp.broadcast.MY_NOTIFICATION"

 // add your data to the intent
 putExtra("data", "bluetooth is pretty awesome too!!")
}

// send the intent with a bluetooth access permission
requireActivity()
 .sendBroadcast(customIntent, Manifest.permission.BLUETOOTH)

Best practices
x If we need to do long running tasks, we should be aware that creating new threads and

background services in the onReceive() may be killed by the system once the method
returns. To perform long running tasks, we will use the JobScheduler (shown on
JobScheduler section)

x Namespaces for broadcast actions are system - global. Make sure your action names
are unique to prevent conflicts with other apps.

x ;LIR�VIKMWXIVMRK�E�VIGIMZIV��ER]�ETT�GER�WIRH�QEPMGMSYW�FVSEHGEWXW�XS�SYV�ETTƅW�
receiver. Use LocalBroadcast when possible and specify a permission when
registering.

x Do not broadcast sensitive data using an implicit intent. The information can be read by
any app that registers to receive the broadcast.

x Use context registration instead of manifest declaration when possible. If many apps
have registered to the same broadcast, it can cause the system to launch a lot of apps,
making a bad impact on performance and user experience.

https://developer.android.com/guide/components/activities/process-lifecycle

Written by Marko Katziv and Eran Katsav ©

Alarm Manager
In this section, we will talk about the AlarmManager. The AlarmManager goes hand in
hand with the broadcast receivers since by using the AlaramManager, we set specific
code to run in the future through a receiver. Once the alarm goes off, a broadcast will
be sent to the broadcast receiver, and the code will be executed. The AlarmManager
allows an application to perform some functions even after the application process or
all of its Android components have been cleaned up by the system. This is because
the AlarmManager provides access to system Ɓ level alarm services

For now, we only use the AlarmManager to display a notification, and demonstrate how
it can be triggered even after we quit the app. The app already contains a class named
AlarmManagerReceiver and we will add the necessary code to make it work.

But before we can start sending notifications, we must register the notification to a
Notification Channel

 Android 8.0+ Notification Channels:

Notification Channels is a feature introduced in Android 8. Each notification must be
assigned to a channel. These channels allow the users to have more control over the
notifications. We can set the notification settings to whichever we like, but once the
channel is created, the control over the notification goes to the user. As mentioned in
the AppUtils section, we are going to write a createNotificationChannel() method,
and activate it in our MainActivity.kt class, so when the app starts it will create the
channel, and we can make notifications according to the Android 8.0 requirements.
-RWMHI�XLI�%TT9XMPWƅ�GSQTERMSR�SFNIGX��EHH�XLI�JSPPS[MRK�QIXLSH

https://developer.android.com/reference/android/app/AlarmManager.html

Written by Marko Katziv and Eran Katsav ©

Notice in the createNotificationChannel() we check the SDK_INT to be Android
Version O and above. For a full list of changes done in Android 8.0 visit:

https://developer.android.com/reference/android/os/Build.VERSION_CODES.ht
ml#O

2S[��PIXƅW�create the AlarmManagerReceiver class. As usual, inherit from the
BroadcastReceiver class, and override the onReceive() method. In the
onReceive() method, call the AppUtils.notify() method. You may use any
title and text you want, or use the preexisting ones:

Next, we need to declare the receiver in the manifest because it is a component that is
activated by an intent.

<receiver android:name=".data.utils.receivers.AlarmManagerReceiver" />

https://developer.android.com/reference/android/os/Build.VERSION_CODES.html#O
https://developer.android.com/reference/android/os/Build.VERSION_CODES.html#O

Written by Marko Katziv and Eran Katsav ©

Next, PIXƅW work on the AlarmFragment. The xml layout file is already present, no need
to create one. This layout contains one button that we will use to set the alarm

First, declare a PendingIntent variable:

In onViewCreated():

Create a new method: handleAlarm():

SetExact() Ɓ This sets the alarm to fire right after the given milli seconds. Providing a
time in the past will trigger the alarm immediately. If there is already an alarm
scheduled for this intent, then the new alarm will take its place. The alarm will be
triggered as nearly as possible to the requested alarm time.

Note I: Apps that target device SDK version 31 and higher must be granted the
SCHEDULE_EXACT_ALARM permission (already added in the manifest):
<uses-permission
android:name="android.permission.SCHEDULE_EXACT_ALARM"/>
Note II: there is also the set() method which is inexact. Up until then, this method
delivered the alarm in an exact manner. Beginning from SDK 19 The system may defer
and trigger it at a later time in order to save battery and optimize background work. For
now we will use setExact().

Written by Marko Katziv and Eran Katsav ©

SystemClock.elapsedRealtime() Ɓ return milliseconds since boot, including sleep time.

ELAPSED_REALTIME_WAKEUP Ɓ This alarm uses the elapsed time since the device
boot (including sleep time).

There are more constants that will make the alarm act differently:

x RTC_WAKEUP Ɓ this cons tant will trigger the alarm even if the device is asleep.
The alarm time is in milliseconds, and uses wall clock time (UTC), meaning it
uses the current time.

x RTC Ɓ Also in wall clock time. This alarm does not wake the device, and will be
delivered only in the next time the device wakes up.

x ELAPSED_REALTIME Ɓ Same as ELAPSED_REALTIME_WAKEUP but does not
wake the device up.

Pay attention to which type of clock time is needed. If declared type
ELAPSED_REALTIME (wake up or not), then we should use the
SystemClock.elapsedRealtime(). If declared RTC (wake up or not), then we should
use the System.currentTimeMillis().

You can read more about the different alarm type here:

https://developer.android.com/reference/android/app/AlarmManager.html#RTC_WA
KEUP

Note: In Android 12 (and upcoming versions), a special permission is needed in order
to set exact alarms. Exact alarms are triggered at a precise moment in the future.

<uses-permission
android:name="android.permission.SCHEDULE_EXACT_ALARM"/>

The user can revoke this permission. so in order to get permissions back, we need to
check if we still have the permission by using the canScheduleExactAlarms() method
and fire an intent that includes the ACTION_REQUEST_SCHEDULE_EXACT_ALARM
intent action.

https://developer.android.com/reference/android/app/AlarmManager.html#RTC_WAKEUP
https://developer.android.com/reference/android/app/AlarmManager.html#RTC_WAKEUP
https://developer.android.com/training/scheduling/alarms#exact-user-grant

Written by Marko Katziv and Eran Katsav ©

Back to our code. Call the handleAlarm() method that you wrote inside the
onClickListener of the alarm button, in the onClickListener of the alarm button
(AlarmFragment.kt):

8LIVIƅW�EPWS�E�RMGI�ERMQEXMSR�XLEX�[MPP�TPE]�[LIR�[I�GPMGO�XLI�FYXXSR�

Cancel Alarms
To cancel an alarm, use the cancel() method. We need to provide the same
PendingIntent when we first set the alarm. Create a disableAlarm() method, with the
same pendingIntent when we set the alarm:

Call this function from the disableAlarm onClickListener

There are preexisting hideDisableBtn() and showDisableBtn() methods. The first
SRI�MW�EPVIEH]�MR�XLI�GSHI��0IXƅW�TYX�XLI�PEXXIV�MR�XLI�handleAlarm() method:

Written by Marko Katziv and Eran Katsav ©

Run the app. Enter the AlarmFragment, and click the alarm button. After 10 seconds,
our notification will pop up. As mentioned in the beginning of this section, the app does
not have to be alive to trigger the receiver, so we can click the button, and exit the app-
the receiver will still work. Try to disable the alarm as well and see that the alarm will
not trigger.

There are different ways to set an alarm. We use the simplest one to set a one-time
alarm. You can also set an alarm to go off in pre-determined time intervals Ɓ inexact
alarms.

InexactRepeating()
This type of alarm, as the name suggests, will not be delivered exactly when we set it
YT�XS�VYR��FYX�[MPP�FI�HIPMZIVIH�EX�E�XMQI�[LIR�XLI�W]WXIQ�XLMROW�MXƅW�QSWX�IJJMGMIRX�JSV�
XLI�HIZMGIƅW�FEXXIV]��-R�%RHVSMH����ERH�higher, the alarm is delivered within one hour
from the trigger time. As mentioned before, the set() method is inexact.

0IXƅW�Change the handleAlarm() method to use the InexactRepeating() method:

Written by Marko Katziv and Eran Katsav ©

This alarm will first fire when we set it, and then repeat itself every 15 minutes in an
inexact manner. 6YR�XLI�ETT�ERH�XIWX�MX�JSV�]SYVWIPJ��8LI�ETT�HSIWRƅX�RIIH�XS�FI�EPMZI�
for the alarm to work, and it will even wake the device up.

The AlarmManager is great for offsetting future tasks and even preserves battery life
when using inexact scheduling. The Android system groups the alarms together from
multiple applications, thus avoiding frequent device wake and networking. But what if
our tasks are not based on time, but rather on factors such as whether the device is
GLEVKMRK�SV�RSX��SV�RIX[SVO�EGGIWW��XLI�%PEVQ1ERKIV�[SRƅX�LIPT�YW�LIVI�

You may disable the inexact alarm code and bring back the previous one for the next
sections. It will be easier to test things out.

Application Components 2 - Services, JobScheduler
and WorkManager

Download the Service PDF Guide here:
https://drive.google.com/file/d/1rOhuIALjGC_EO9cUQbT8rZL-NFThC0L9/view?
usp=sharing

Download the JobScheduler PDF Guide here:
https://drive.google.com/file/d/1KejxmshiS-1top6OZsOXFzcYWu21LpeG/view?
usp=sharing

Download the WorkManager PDF Guide from here:
https://drive.google.com/file/d/1t3Hcat7eT-nNgkWAuFq0zOBnFSdCdq9E/view?
usp=sharing

Download the Components 2 Starter project:
https://drive.google.com/file/d/1oOOhp5xQR1fwmRKHgI7O1WVbxImunIAU/
view?usp=sharing

Download the Components 2 Final App:
https://drive.google.com/file/d/1wjTkR3rWEGzKKp7ol4zdSfwgpG5PlN3F/view?
usp=sharing

Written by Marko Katziv and Eran Katsav ©

Services

Introduction

A service is an application component that can perform long Ɓ running operations
without a UI. A lot of explanations on the web about the Android service (including
developer.android.com) begin with a statement that it is a component which runs
MR�XLI�FEGOKVSYRH��8LEXƅW�QMWPIEHMRK�FIGEYWI�SRI�QMKLX�XLMRO�XLEX�XLI�code inside
the service automatically runs in a background thread.

So let this be clear: A service runs in the main thread of the application. In order
to actually work in a background thread inside a service, we need to create one
by ourselves, either by using Thread(), or using various Kotlin coroutine methods.

Now XLEX�[I�KSX�XLEX�SYX�SJ�XLI�[E]��PIXƅW�I\TPSVI�XLI�WYFNIGX�

Note: A lot of functionality of the service may be implemented with the relatively
new WorkManager API. So if you read something in this section and think that you
might be able to implement the same functionality in a cleaner fashion with a
WorkManager Ɓ you probably can.

Written by Marko Katziv and Eran Katsav ©

JobScheduler
As mentioned before, we can activate our functions at a certain time, and set it to
repeat itself IZIR�SYXWMHI�SJ�XLI�ETTƅW�PMJIXMQI��But a lot of tasks that we might need to
do in the future [SRƅX be time dependent, but rather based on user interaction and
system states.

For example, an app might need to update itself, but it needs to be done [LIR�XLIVIƅW�
internet connection (obviously). Another example is if an app would like to activate a
heavy service that consumes a lot of resource and battery. In this case, we might want
to constraint the trigger of the service and activate only when the phone is charging, or
simply in idle mode. %PEVQ1EREKIV�HSIWRƅX�SJJIV�XLIWI�OMRHW�SJ�GSRWXVEMRXW��WS if you
want to write that code for yourself, Goodluck!

Enter JobScheduler. The JobScheduler works on devices with SDK version 21 and
above. The JobScheduler MW�QIERX�I\EGXP]�JSV�XLI�OMRH�SJ�NSF�XLI�%PEVQ1EREKIV�GERƅX�
HS��&]�WIXXMRK�E�ƈGSRXVEGXƉ�JSV�XLI�NSF��[I�GER condition our code to fire when the
GSRXVEGXƅW�conditions are met. An analogy for this would be giving employees an
assignment, but telling them to do it once they are not doing anything else.

0IXƅW�get familiar with some basic components of the JobScheduler.

JobInfo Ɓ This class contains a set of constraints and conditions that we want our
scheduler to work under. This is the contract we have with the JobScheduler. through
this class, we can get an instance of a Builder to define our constraints for the job.
After we finish building, we pass the created JobInfo to the JobScheduler.

JobService Ɓ This service executes each job on the main thread, so if the task is a
long or heavy one, we need to make sure to do it on a different thread. The tasks we
need to run will be implemented inside this service. We need to inherit from this class
and implement the onStartJob() and onStopJob() methods.

In this part, we will activate a JobService from a broadcast receiver. We will use the last
receiver we used for the AlarmManager. Our goal for this part is to activate the
broadcast receiver, which will trigger the JobScheduler. The job would be downloading
something off the web, and then changing the content of the notification to whatever it
downloaded. We will simulate the download with a delay function.

https://developer.android.com/reference/android/app/job/JobInfo?hl=en
https://developer.android.com/reference/android/app/job/JobService

Written by Marko Katziv and Eran Katsav ©

WorkManager
As we have seen, There are multiple options to set tasks in the future

WorkManager is an API for reliable deferred background work. By using enqueue()
method, we can set a Worker with a WorkRequest, and the WorkManager will take care
of almost everything for us. In order to implement that, it uses the JobScheduler and
the AlarmManager with the help of broadcast receivers. It also uses the Firebase
.SF(MWTXEGLIV��[LMGL�MWRƅX�GSZIVIH�MR�XLMW�HSGYQIRX�

WorkManager will automatically choose the appropriate method to run our task,
alongside with any constraints we give it. It also takes into consideration the device API
level. By doing so, it abstracts all the complexity of writing deferrable guaranteed work,
and provides us with a clean API that makes it easy to schedule reliable tasks.

This way we manage to cover devices that runs old Android versions, and devices that
HSRƅX�LEZI�EGGIWW�XS�+SSKPI�4PE]�WIVZMGIW��WSQI weird Chinese devices)

Workmanager can schedule both single and periodic tasks. We can also chain tasks
together in sequence, where one task runs after the previous task.

Written by Marko Katziv and Eran Katsav ©

Appropriate use cases
There are many different scenarios in which we would like to enqueue a task to be done
in the future, or simply under specific conditions. The common thing among them all is
that we want to make sure they finish in a finite time, and actually run when needed to.

Deferred Ɓ we need to consider if it makes sense for the task to be run at a later time. If
the answer is yes, then the task is deferrable. A few examples would be:

x Communicating with a server
x Writing Log files
x Periodically syncing data

Determinism Ɓ we need to consider if our task needs to be eventually completed, even
if the app is closed. For example, if our app needs to receive critical data from a server,
we will probably want it to be done even after the user exits the app.

So, as a rule of thumb, use The WorkManager when you need to do reliable deferred
work.(even after user exits the app). It is not intended for tasks that needs to run
immediately, or at an exact time. For that, we can use the AlarmManager.

Basics
There are a few classes we need to cover before diving into the code:

x Worker Ɓ the class for the actual task we need to run in the background. We
extend this class, and override the doWork() method. Since this is a Kotlin
tutorial, we will use the CoroutineWorker class with the suspend doWork()
method.

x WorkRequest Ɓ a request to do some work. In here we will also set the
constraints on the worker.

x WorkManager Ɓ The actual class used for scheduling our WorkRequest. This
class handle all the resource-saving logic while following our constraints.

x WorkInfo Ɓ This class contains data about the on going work. We can even
observe a LiveData that will wrap this object.

All background work is given a limit of 10 minutes to finish MXƅW�I\IGYXMSR�

https://developer.android.com/reference/kotlin/androidx/work/CoroutineWorker#dowork

Written by Marko Katziv and Eran Katsav ©

In this section, we will enqueue a WorkRequest to fetch the number of corona cases in
each city. We will constraint the worker to work only when the device is charging. the
returned fake data is a type of Hashmap<String, Int>.

The following dependency is already inside the project:

// WorkManager dependency
implementation "androidx.work:work-runtime-ktx:2.7.0"
The project contains initial code for this section in packages:

x package com.eran.applicationcomponents.data.utils.workmanager

x package com.eran.applicationcomponents.data.network

We will begin by going through some important parts of the initial code

This function manages the call to the outside world, and also let the user know what is
going on by using notifications. it fetches the data, finds the city with the most corona
cases, display the results in a notification and returns a Boolean to indicate success or
failure. -XƅW�MRWMHI�XLI�
com.eran.applicationcomponenets.data.utils.workmanager package,
WorkerUtils.kt class.

Written by Marko Katziv and Eran Katsav ©

This class implements the network call to receive the statistics. To simulate the call,
we use a delay() method. The returned results is a hash map with a String key and Int
value. -XƅW�MRWMHI�XLI�com.eran.applicationcomponenets.data.network package.

0IXƅW�WXEVX�F]�GVIEXMRK�E�;SVOIV�GPEWW�XLEX�[MPP�MRLIVMX�JVSQ�XLI�'SVSYXMRI;SVOIV�

We have an error because we need to implement the doWork() QIXLSH�WS�PIXƅW�HS�XLEX�
now:

Written by Marko Katziv and Eran Katsav ©

Notice the doWork() method is a suspend method. The default dispatcher is
Dispatchers.Default. The coroutineWorker also handles canceling the coroutine if
needed. We will implement this method later on.

We need to provide our worker with a method that will use the fetch() method. We also
want to give it a timeout incase something will go wrong with the network request:

This function returns a Boolean that indicates whether the task has finished
successfully or not. It uses withTimeout() method that runs a suspending block
inside a coroutine with respect to its timeMillies parameter. If the time is up, a
TimeoutCancellationException will be thrown. We give our worker 2 seconds to
complete the network request.

Written by Marko Katziv and Eran Katsav ©

0IXƅW�KIX�FEGO�XS�XLI�doWork() method. This method must return a Result object.

Result.failure() Ɓ If there are any workers that are chained to the current one, they will
all be cancelled. So if they are dependent on the previous worker we should return a
6IWYPX�JEMPYVI�
�WS�XLI]�[SRƅX�XV]�XS�VYR�

Implement the doWork() method as followed:

We call the getCoronaData() method, and return success or failure according to the
Boolean we got from getCoronaData()

Written by Marko Katziv and Eran Katsav ©

In the AlarmManagerReceiver.kt class, change the onReceive() method to the
following:

AlarmManagerReceiver.kt

7IX�E�GSRWXVEMRX��TVITEVI�E�HEXE6IUYIWX�ERH�IRUYIYI�MX��-XƅW�XLEX�WMQTPI�

Note: we can give a worker some initial data to work with by using the
setInputData() method which accepts a key-value Data object. For example:

And get it inside the doWork() method (must provide a default value as well):

Written by Marko Katziv and Eran Katsav ©

In this example we set up a OneTimeWorkRequest, which as the name suggests, will be
a one-shot operation, and will not repeat itself, unless stated with a Result.retry(). We
set a Charging constraint and then pass it to the WorkManager. We can also set an
initial delay with the setInitialDelay() method.

OneTimeWorkRequest States
The work begins in the ENQUEUD WXEXI��-R�XLMW�WXEXI��XLI�[SVO�QE]�VYR�EW�PSRK�EW�MXƅW�
constraints are met. The next state is RUNNING and from there it will either be
SUCCEEDED or FAILED, or ENQUEUD again if we set the work to retry in case of failing.

Periodic Work State
With WorkManager we can also create PeriodicWorkRequest which will be triggered
every X amount of time (explained later). The PeriodicWorkRequest does not have a
SUCCEEDED or FAILED WXEXI��FIGEYWI�MXƅW�[SVO�HSIWRƅX�IRH��-X�SRP]�LEW�En ENQUEUD and
CANCELLED state.

https://developer.android.com/reference/androidx/work/OneTimeWorkRequest
https://developer.android.com/topic/libraries/architecture/workmanager/how-to/define-work#retry_and_backoff_policy

Written by Marko Katziv and Eran Katsav ©

For now, we will run the app. Because the phone is charging while connected to the
computer, we expect to reach the AlarmManager fragment, hit the alarm, and after 10
WIGSRHW�WII�E�RSXMJMGEXMSR�WE]MRK�ƈ*IXGLMRK�GSVSRE�WXEXMWXMGWƉ��%JXIV���more seconds
we should see a new notification with the results of the computation.

Spoilers: we got a notification saying the Work has been cancelled. This was to show
the functionality of the withTimeout() QIXLSH��0IXƅW�JM\�XLMW�F]�KMZMRK�QSVI�XMQI.

Run the app again while the phone is charging. Try setting the alarm and exiting the
app. The notifications will still be displayed. Try even starting the app without the
phone charging, hit the alarm and see that nothing happens. After a while. Plug the
phone back in and the workRequest will start immediately.

Important! Be careful of duplicate work when enqueuing. In our example, the work is
enqueued by a broadcast receiver which is activated via the AlarmManager, so if we
click a lot of time on the alarm button, we [SRƅX�WII�ER]�HYTPMGEXIW right away because
XLI�W]WXIQ�HSIWRƅX�EPPS[�WTEQQMRK�EPEVQW. Instead, we will get unexpected behavior.

If we enqueue multiple times the workRequest right away, we would be able to see in
the Logcat the duplicates:

Written by Marko Katziv and Eran Katsav ©

Avoid work duplication

Unique Work
In order to avoid duplications, we can use unique work functions-
enqueueUniqueWork() and beginUniqueWork. By doing so, we can define the
behavior of the duplicate:

x Replace Ɓ replacing existing work with a new.
x Keep Ɓ keep the existing work and ignore the new.
x Append Ɓ append the new work to the end of the existing one. This behavior

causes the new work to be chained to the existing one

Both of the methods mentioned must be provided with the 3 arguments:

x uniqueWorkName Ɓ a String to identify the workRequest.
x exisitingWorkPolicy Ɓ one of the 3 options mentioned above (replace, keep,

append)
x work Ɓ the workRequest.

For example:

Written by Marko Katziv and Eran Katsav ©

Chaining Work
Next, we are going to write a second worker, and chain his work to the existing worker.
WorkManager allows us to chain multiple WorkRequest. To chain two or more
WorkRequest, instead of using the enqueue() method right away, we start with the
beginWith() method which accepts a workRequest and returns a WorkContinuation.

The WorkContinuation lets us chain multiple OneTimeRequestƄW�XSKIXLIV��8LVSYKL�XLMW�
object, we can create a complex chain of request. For example, suppose we have 2
chains of requests, and we need for both of them to finish before activating the third
chain of requests (by using the combine(chain1, chain2) method).

Chain example

Once the first workRequest finished successfully, the next workRequests may begin. If
a workRequest fails, all of its child workRequests are terminated. For now we will keep
it simple and chain a second workRequest.

0IXƅW�WXEVX�F]�GVIEXMRK�E�JMRMWLRequest class that will inherit from CoroutineWorker:

https://developer.android.com/reference/androidx/work/WorkContinuation

Written by Marko Katziv and Eran Katsav ©

The strings are already in the project. Return success to let the WorkManager know
the worker completed its task.

Once again, Change the onReceive() method of the AlarmManagerReceiver.kt
class

We set the finishRequest constraint to not require charging, but you can use any
constraint you want. Instead of using enqueue() right away, we set the WorkManager
to begin with a workRequest, followed by another request, and only then using the
enqueue() method. Run the app and witness magic!

Written by Marko Katziv and Eran Katsav ©

Repeating workRequests
We can also use the PeriodicWorkRequest to repeat the work that needs to be done.
The first run will execute immediately (or as soon as the conditions are met). The next
execution will happened during a time interval that we specify for the
PeriodicWorkRequest.

The time of execution may be delayed because the WorkManager is under battery
STXMQM^EXMSRW�SFPMKEXMSRW��-X�MW�MRXIRHIH�JSV�YWI�GEWIW�[LIVI�[I�HSRƅX�QMRH�
inexactness due to battery optimizations. A PeriodicWorkRequest cannot be a part of
a chain. It does not return a Result object, and it can only be cancelled explicitly.

In the above code, there is a 1 hour interval between calls. PeriodicWorkRequest has a
minimum time interval of 15 minutes. We can even be more flexible and provide a
time window inside the workRequest interval: start work in the last 15 minutes of the 1
hour interval.

Written by Marko Katziv and Eran Katsav ©

Long Running Workers
WorkManager has support for operations that require more than 10 minutes to finish.
%�WMKREP�MW�TVSZMHIH�XS�XLI�W]WXIQ�XLEX�MJ�TSWWMFPI��XLI�TVSGIWW�WLSYPHRƅX�FI�
terminated. The WorkManager manages and runs a foreground service for us, but we
need to provide a notification letting the user know a long running service is running.

Inside the doWork() method we can call the setForeground() method and pass it a
ForegroundInfo object that contains a notification ERH�MXƅW�-(. The notification needs to
have setOngoing() XS�XVYI�WS�XLI�YWIV�[SRƅX�FI�EFPI�XS�HMWQMWW�XLI�RSXMJMGEXMSR��7S we
must take care of cancelling it, either by letting the user cancel it with a button, or
cancel it programmatically. Example (notice the setForeground()):

https://developer.android.com/reference/androidx/work/ForegroundInfo

Written by Marko Katziv and Eran Katsav ©

Android 10 and 11 Foreground - Worker Requirements Ɓ location,
camera and microphone
If the foreground worker needs to have access to location, camera or microphone, we
need to declare these service types in the manifest and at runtime.

In Android 10 and above we need to declare the location foreground service type. If
the app targets Android 11 and above, we also need to declare the camera and
microphone foreground service type.

When we start a foreground type work at runtime, we get the capability to access the
services that we declare in the manifest: the location, camera and microphone.

In runtime, we need to specify the service type we need for our service��;I�HSRƅX�LEZI�
to use all of the declared service type in the manifest. For example:

In here, we check if the app is running Android 10 or higher. If it does, we need to use
the setForeground() method with the FOREGROUND_SERVICE_TYPE_LOCATION.
The ForegroundInfo object takes a notification ID, the notification itself, and the
needed service type.

These requirements are meant to protect the users privacy by limiting foreground
services that were started from the background. Even though adding foreground
service types give a foreground service the capability to access location, camera and
microphone, it is still under the access restriction that were introduced in Android 11:
If the app is running in the background, the app must be granted with the
ACCESS_BACKGROUND_LOCATION permission, and the foreground service cannot

https://developer.android.com/guide/components/foreground-services#types
https://developer.android.com/reference/android/Manifest.permission#ACCESS_BACKGROUND_LOCATION

Written by Marko Katziv and Eran Katsav ©

access the microphone or the camera. But there are a few exemptions from these
restrictions such as when the service is started by a system component or by user
interaction with a notification.

For the full list of exemptions, read here:

https://developer.android.com/guide/components/foreground-services#bg-access-
restriction-exemptions

We will talk more about services and their nature in the next section.

Summary

x Used for work that can be deferred.
x WorkManager chooses the appropriate way to run your task based on such

factors as the device API level and the app state.

x WorkManager might use a JobScheduler, Firebase JobDispatcher, or

AlarmManager with broadcast receivers.

x Guarantees task execution, even if the app or device restarts
x Use the CoroutineWorker to work inside a suspend function.

https://developer.android.com/guide/components/foreground-services#bg-access-restriction-exemptions
https://developer.android.com/guide/components/foreground-services#bg-access-restriction-exemptions

Written by Marko Katziv and Eran Katsav ©

0IXƅW�[VMXI�XLI�RIGIWWEV]�GSHI�XS�MQTPIQIRX�XLI�.SF7GLIHYPIV��*MVWX��PIXƅW�GVIEXI�XLI�
create package ta.servicesdaJobService that will be passed to the scheduler. Inside

a new class: DownloadService. This class needs to implement the CoroutineScope
interface. Also, we need to inherit from the JobService() class, and override the

dmetho onStopJob()and onStartJob()�

onStartJob() Ɓ XLMW�JYRGXMSR�MW�GEPPIH�[LIR�XLI�GSRHMXMSRW�[IƅZI�WIX�MR�XLI�.SF-RJS�EVI�
met.

Return false if job is already finished.

Return true if the job needs to continue to run after the method returned.

onStopJob() Ɓ this function is called if the Android system decides to stop execution of
the job. For example, if we set our job to work only when the phone is charging, and the
job has begun, then if we disconnect the phone, onStopJob will be called.

Return false to end the job completely.

Return true if we want to reschedule the job (must be configured in the JobInfo using
the Builder)

Next, we need to inherit from the JobService() class, and override the onStartJob() and
onStopJob() method

*MVWX��[I�RSXMJ]�XLEX�HS[RPSEHMRK�LEW�FIKYR��0IXƅW�WMQYPEXI�XLI�HS[RPSEHMRK�F]�
launching a coroutine and delaying for 5 seconds, and then notify again that the job is
finished. Inside the onStartJob() method. We also need to return true because the job
MWRƅX�JMRMWLIH�EW�WSSR�EW�XLI�onStartJob() method returns �SR7XEVX.SF�MWRƅX�E�WYWTIRH�
function!).

https://developer.android.com/reference/android/app/job/JobService#onStartJob(android.app.job.JobParameters)
https://developer.android.com/reference/android/app/job/JobService#onStopJob(android.app.job.JobParameters)

Written by Marko Katziv and Eran Katsav ©

jobFinished Ɓ call this function to let the JobScheduler know that the job is finished.
This function is needed incaWI�SYV�NSF�MW�EW]RGLVSRSYW��ERH�MWRƅX�JMRMWLIH�[LIR�
onStartJob() returns.

In the onStopJob() QIXLSH�[I�WMQTP]�VIXYVR�JEPWI�FIGEYWI�[I�HSRƅX�RIIH�XS�
reschedule our job.

We also MUST declare our JobService in the manifest:
<service
 android:name=".data.services.DownloadService"
 android:permission="android.permission.BIND_JOB_SERVICE" />

The android.permission.BIND_JOB_SERVICE must be provided. If not, this service
will be ignored. This permission is defined with the signature protection level. A
signature protection level means that we will be able to talk to different components of
the Android system only if we have the same signature as them. This means that only
the JobScheduler is able to run the JobService.

https://developer.android.com/reference/android/app/job/JobService#jobFinished(android.app.job.JobParameters,%20boolean)

Written by Marko Katziv and Eran Katsav ©

Now, inside data.utils package, create a Scheduler.kt class. Inside it make a
companion object with a schedule() method, and a constant that will represent the
job id:

Inside the schedule() QIXLSH��XLEXƅW�[LIVI�[I�TVSZMHI�SYV�DownloadService.kt class
to the JobInfo Builder, and set our constraints on the job. Add the following lines. You
can also experiment with different kind of constraints.

Written by Marko Katziv and Eran Katsav ©

We can also add multiple constraints:

x A constraint for requiring the device to be with cellular network (requires SDK
28).

x A constraint for requiring the device to be in idle mode
x A constraint for requiring the device to have enough storage (the point where the

YWIV�VIGIMZIW�E�ƈPS[�[EVRMRKƉ�QIssage from the system) Ɓ requires Android 8.0+

For a full list of the available constraints:

https://developer.android.com/reference/android/app/job/JobInfo.Builder#summary

For now we will use only the setRequiredNetworkType() and pass a parameter that
indicates we must have cellular connection.

JobScheduler.schedule() Ɓ XLI�JYRGXMSR�XS�WGLIHYPI�E�NSF��-J�XLIVIƅW�EPVIEH]�E�
scheduled job with the same ID, the old job will be replaced with the new one. If an
existing job with the same ID is already running, it will be stopped when we schedule
with the same ID.

Now, Change the onReceive() function in AlarmManagerReceiver:

https://developer.android.com/reference/android/app/job/JobInfo.Builder#summary
Eran Katsav

Written by Marko Katziv and Eran Katsav ©

We are now ready to try our JobScheduler. Unplug your phone from the charger, and
start the alarm. Because we set requiresCharging to true, nothing will happen. Plug the
phone back in and the task will be executed immeditaley.

Notes:

x To use the JobScheduler, we need a JobInfo.Builder to configure the constraints
and conditions, and a JobService to implement the job.

x The JobService must be declared with a BIND_JOB_SERVICE permission in the
manifest.

x onStartJob() returns a Boolean that indicates if the job needs more time to be
finished (such as asynchronous action). If return true, we must call jobFinished().

x JobService works on the main thread. For any long operations and networking,
use a different thread.

x .SF7GLIHYPIV�KVSYTW�XEWOW�XSKIXLIV�XS�WEZI�W]WXIQ�VIWSYVGIW��WS�[I�HSRƅX�LEZI�
full control of when job gets executed.

Written by Marko Katziv and Eran Katsav ©

Overview

Android service is one of the 4 fundamental application components. IXƅW�MRXIRHIH�
to run long operations, even after the user exited the app. The service does not
have a user interface��8LEX�QIERW�XLEX�MX�HSIWRƅX�GSRXEMR�ER]�ZMI[references at
all. It does noX�QIER�[I�GERƅX�HMWTPE]�MXƅW�HEXE�SR�XLI�9-. We can interact with it via
FVSEHGEWXW��ERH�IZIR�FMRH�SYV�ETTƅW�EGXMZMX]�XS�MX��ERH�KIX�VIJIVIRGIW to its public
methods and variables. We can even set LiveData objects inside it and observe
them while the app is alive. More on communication later on. 0IXƅW�XEOI�E�PSSO�EX�
the basics:

Lifecycle

A services lifecycle can have two forms:

Started Ɓ the service is started by calling the startService() method. From
there, the server runs until it is stopped by calling the stopSelf() method. It can
also be stopped by a different component by calling stopService(). When it gets
to ƈstoppedƉ, the system kills it.

Bound Ɓ the service begins its lifecycle when another component binds to it by
calling the bindService() method. By using this bound service, we can
communicate with it via an IBinder interface, which will enable us to get a
reference to it. Multiple components can bound to a single service, and can unbind
by calling unbindService() method. Only when the last component bound to the
service calls this method, the service dies (the other option is it simply crashed).
It does not need to stop itself .

We can also mix these two forms. We can bind to a service that had already
started. An implementation for that would be a music player: the users might want
to do other things in their device while listening to music, and then jump back to
the music player to take wider control of the app and change a song, or skip to a
different part of the song.

Written by Marko Katziv and Eran Katsav ©

Note: The system may stop the service by itself when it is running low on memory,
and must regain some. There is an option of setting the service as a Foreground
service, which lets the service stay alive (almost always) despite the memory
hungry system. But if the system does decide to terminate the service, it will restart
it when possible. More on Foreground services later on.

Written by Marko Katziv and Eran Katsav ©

Basic methods of the lifecycle

onStartCommand() Ɓ This method is called when a component requests to start
the service. The system invokes this method by calling startService(). The
service is then started and can run indefinitely. It is our job to make sure it is
stopped when needed to either by calling stopSelf() from inside the service, or
stopService() from outside of it.

onBind() Ɓ This method is called when another component request to bind with
the service by calling bindService(). For binding with a service, we need to
have an interface for the binding component to use in order to communicate with
the service.

Note: only activities, other services and content providers can bind to a service.
We cannot bind to a service from a broadcast receiver. Unless it is registered
H]REQMGEPP]�FIGEYWI�XLIR�MXƅW lifetime is tied to another live component.
reference

onCreate() Ɓ The system calls this method when the service is created. This
method will be run once per lifecycle to setup the service. Meaning, if the service
is already running, this method will not be called again.

onDestory() Ɓ This method is called when the service is no longer in use. In this
method, we need to clean up any resources we might have used such as thread
and coroutines, listeners and broadcast receivers.

onUnbind() Ɓ This method is called when all the components that were bound to
the service disconnected.

Use cases

8LI�WIVZMGI� MW� MRXIRHIH�XS�VYR� MR� XLI�ƈFEGOKVSYRHƉ��QSWXP]�E[E]�JVSQ�XLI�YWIVW�
eyes, when we need to do some tasks that does not involve views. If we simply
want to perform operations outside of the main thread, we have many, many ways
to do that, as seen in the previous sections.

If we need to make long running operations that needs to be kept alive after the
user exited or switched to a different app, then this is a good usage of the service
GSQTSRIRX��-R�KIRIVEP��MJ�XLI�YWIV�HSIWRƅX�Reed to interact with the application, but
the app must still be alive, then a service is a good option.

https://developer.android.com/reference/android/content/Context#bindService(android.content.Intent,%20android.content.ServiceConnection,%20int)

Written by Marko Katziv and Eran Katsav ©

Declaring a service in the manifest

;I�QYWX�HIGPEVI�EPP�SJ�SYV�WIVZMGIW�MR�XLI�ETTƅW�QERMJIWX��EW�WLS[R�FIJSVI�[MXL�
the JobService for example. To declare a service, we add the <service> tag in the
<application> part of the manifest. Example:

The name attribute is the only required attribute. It is the name of our service class.

There are more attributes:

x exported Ɓ whether or not other apps can start our service.
x enabled Ɓ whether or not the service can be started by the system.
x permission Ɓ specify a permission that a component must have in order to

start the service or bind to it.

for a full list of attributes, visit:
https://developer.android.com/guide/topics/manifest/service-element#prmsn

https://developer.android.com/guide/topics/manifest/service-element#prmsn

Written by Marko Katziv and Eran Katsav ©

Creating a started service

0IXƅW�FIKMR�[MXL�WSQIXLMRK�FEWMG��-R�XLI�data.services package, create a new
class, and inherit from the Service class Call it MyService:

The compiler gives an error because we need to override the onBind() method.
So lets override this method. Also, make the class implement the Coroutine scope
so we would be able to launch coroutines from the service:

For now, in the onBind() method we will return null. By returning null we deny any
binding to our service. And for the coroutineContext, we will use the
Dispatchers.DEFAULT:

Written by Marko Katziv and Eran Katsav ©

Next, we will override the onDestroy() method so we can cancel the coroutine
job:

And now for the real work. Override the onStartCommand() method of the service.
As mentioned before, when we start the service with the startService() method,
the onStartCommand() will be invoked and the server will be created and started.

Explanation:

This method receives an intent that we pass in the startService() method.

The flags can be either:

x START_FLAG_REDELIVERY Ɓ Incase the system killed the service, the
previously delivered intent will be redelivered.

x START_FLAG_RETRY Ɓ This flag means that the service was restarted
because the last call to onStartCommand() never returned before the
service was destroyed. It was either killed by the system before it returned,
or simply crashed.

Written by Marko Katziv and Eran Katsav ©

x START_STICKY Ɓ if the system kills the service after onStartCommand()
returns, the service will be recreated and call onStartCommand() again, but��
instead of redelivering the last intent. It will deliver null.

Note: -R�GEWI�[I�HSRƅX�[ERX� XLI�WIVZMGI� XS�WXEVX�EJXIV� XLI�W]WXIQ�OMPPW� MX�� VIXYVR�
START_NOT_STICKY in onStartCommand() to indicate to not recreate the service
unless there are pending intents to deliver.

For more flags, visit here:
https://developer.android.com/reference/android/app/Service#constants_1

startId parameter Ɓ this is a unique integer that represents the specific request to
start the service

0IXƅW continue with our code. In the onStartCommand() method, use the
AppUtils.notify() method to create a notification with any text you want. You
can also use the preexisting strings:

0IXƅW�EPWS�TYX�E�toast in the onCreate() method of the service, so we can see that
it only gets called once per service creation:

https://developer.android.com/reference/android/app/Service#constants_1

Written by Marko Katziv and Eran Katsav ©

When we want to pass messages (intents) to an already started service, we also
use the onStartCommand() method, but onCreate() will not trigger because the
service had already been created. In the intent we pass, we can plant the data we
[ERX�XS�KMZI�XS�XLI�VIGIMZIV��ERH�[I�KIX�MX�F]�KIXXMRK�XLI�MRXIRXW�)<86%ƅW� We will
demonstrate this by sending 2 intents one after the other later on.

We also must declare the service in the manifest:

Since this is considered as a local service (this is our service, started by our app),
there is no need to set the exported attribute, as we did with the
BluetoothStateReceiver.

In the service onDestroy, create a toast message to indicate the service was
destroyed.

2I\X��PIXƅW�[SVO�SR�XLI�ServiceFragment.kt already present in the project. This
fragment contains two buttons: one for starting the service and one for binding
with it. We start with a regular startService() method.

Inside the onViewCreated() method of the ServiceFragment, use the binding
object to set an OnclickListener for the startService button. From there, we will
WXEVX�XLI�WIVZMGI�YWMRK�XLI�EGXMZMX]ƅW�GSRXI\X��ERH�TEWW�ER�-RXIRX�[MXL�XLI�GSRXI\X��
and our Service class.java.

Written by Marko Katziv and Eran Katsav ©

(SRƅX�JSVKIX�XS�WXST�XLI�WIVZMGI�[LIR�RS�PSRKIV�RIIHIH��-R�XLMW�I\EQTPI��[I�[MPP�
stop the service from outside, so we need to call the stopService() method. We
will call this method from the onDestroyView() method of the ServiceFragment:

We are now ready to run the app. Start the app and navigate to the
ServiceFragment. Click the start service button, you should see a notification
with the title and text you gave it earlier. Also, try to navigate back from the
ServiceFragment to see a Toast that the service is destroyed.

2S[��0IXƅW�WIRH�WSQI�HEXE�XS�XLI�WIVZMGI�XLVSYKL�ER�MRXIRX�EJXIV�MX�started. Write
an onLonClickListener for the startService button

Create 2 constants for the intent extra:

Return true to consume the long click.

Now in the service class, lets work on the received data. Inside the
onStartCommand() method, get the extra from the intent parameter. If it matches
the EXTRA_KEY, get the data and display it in a notification. If the data is null, that
means a short click was made so just display the first notification. You may
remove the old notification from the onStartCommand()

Written by Marko Katziv and Eran Katsav ©

Run the app. You should first see the first notification greeting you Hello, and after
you long click the button, you should see the second notification with our data.

Next, we will try to bind to our service, and pass data back to our activity from the
service.

Bound Service

When binding a service, we must provide a Binder object that will provide us the
interface that we need to communicate freely with the service. We need to extend
the Binder class, prepare the Binder object and return it in onBind() method
instead of null.

Note: return @Myservice to return the context of the service, and not the
LocalBinder.

the Binder object is the current instance of our Service, that will give us access to
the services public methods and variables. Lets also add a random number
generator to the service class that we will use from the activity.

Written by Marko Katziv and Eran Katsav ©

0IXƅW�KIX�FEGO�XS�XLI�ServiceFragment.kt class. Create a service variable of the
type of our service:

Now, create the connection object that will implement the callback to when the
service gets bound. Inside the onServiceConnected() method, access the
VERHSQ�RYQFIV�ERH�WLS[�MX�MR�E�WREGOFEV��3V�MR�E�RSXMJMGEXMSRƏ�]SY�know the drill.

In the onServiceDisconnected(), show a snackbar to indicate disconnection.

Create an onClickListener for the bindService button with the following code:

In here, we create a simple intent provided with the context and our service class.

8LIR� [I� YWI� XLI� EGXMZMX]ƅW� GSRXI\X� XS� FMRH the service, passing the intent, the
connection variable, and a BIND_AUTO_CREATE constant that indicates to
EYXSQEXMGEPP]�GVIEXI�XLI�WIVZMGI� MJ� MX�[EWRƅX�EPVIEH]�GVIEXIH��2SXI�XLEX� MJ� MX�HSIW�
creates the service, the onStartCommand() method will only be called from an
explicit call to startService()

Written by Marko Katziv and Eran Katsav ©

As mentioned above, a bound service dies only when nothing is bound to it. So in
the onDestroyView() of the ServiceFragment, we need to unbind in case we were
bounded:

Run the app. Try first starting the service, and then binding to it. At first, you should
see the greeting notification, and after binding, you should see the random
number. Exit the fragment and enter again in order to destroy the service. Try the
other way around and first bind with the service. Notice that while the random
number was JIXGLIH�� XLIVI� [IVIRƅX� ER]� RSXMJMGEXMSRW�� %W� I\TPEMRIH� FIJSVI��
onStartCommand() only gets called from an explicit onStartService()

Foreground services

%�JSVIKVSYRH�WIVZMGI�MW�E�WIVZMGI�XLEX�XLI�YWIV�MW�E[EVI�SJ�ERH�MWRƅX�E�GERHMHEXI�JSV�
the system to terminate when it is low on memory. For example, a music player
XLEX�RIIHW�XS�TPE]�QYWMG�[LIR�XLI�YWIV�MWRƅX�MR�XLI�ETT��SV�E�REZMKEXMSR�ETT�XLEX�
needs to display directions while the user is doing something else in their phone.

An app is considered to be in the foreground if it has a visible activity or a service
that is in the foreground mode.

The foreground service must display a notification for the user, indicating that a
foreground service is running. As long as the foreground service is running, the
notification must not be dismissed. To implement that, we will create another
RSXMJ]� QIXLSH� XLEX� [MPP� ETTVSTVMEXIP]� WIX� YT� XLI� RSXMJMGEXMSR� WS� MX� GERƅX� FI�
dismissed. Through this notification, you can also provide the user some UI to
control what is going on. For example:

Written by Marko Katziv and Eran Katsav ©

Note: Apps that target Android 9 (API level 28) or higher and use foreground
services must request the FOREGROUND_SERVICE permission. With this
permission, the system will allow our app to run a foreground service.

Inside the service class, lIXƅW�GVIEXI�E�makeNotification() method. You can use
your own text to display in the notification, or use preexisting ones.

Note: without setting a title, text and an icon we get unexpected behavior. So make
sure to put them all in there.

In the onStartCommand() method, disable the last code we wrote WS�MX�[SRƅX�
bother us.

To help demonstrate the foreground service,� � we need to disable the
stopService() method in the onDestroyView() method in the ServiceFragment.

we are also going to create a text-to-speech method for our service that will play
when the service is created. First, add the following variable:

Written by Marko Katziv and Eran Katsav ©

2S[��PIXƅW�MRMXMEPM^I�XLI�tts object in the onCreate() method

The first parameter for the TextToSpeech is the context. The second one is a
listener. The listener is used to indicate our service that the text-to-speech engine
is ready to use. At that moment, we will begin the speech.

speak() Ɓ parameters:

x text - String to be spoken.
x queueMode - Queueing strategy Ɓ In this example, the new entry will replace

all existing entries.
x params Ɓ A Bundle that contains configurations for the speech such as

stream type and volume.
x utteranceId Ɓ A unique string for identifying this speak request.

Use the preexisting string to pass to the speak() method, or just enter your own.

Also, we need to know when the text-to-speech is done so we can close it. Add the
UtteranceProgressListener:

Written by Marko Katziv and Eran Katsav ©

Also, we need to shut down the TextToSpeech in case it is currently working,
when we destroy the service:

Before we make the service a foreground type��PIXƅW�XV]�XS�VYR�XLI�app without it.
Start the app and Navigate to the ServiceFragment. When you start the service, a
speech will play, but without indication for the user that something is active.
While it plays, kill the app. The speech will stop immediately, because the app
[EWRƅX�in foreground mode the service died with the app.

 2S[�PIXƅW�QEOI�SYV�WIVZMGI�E�JSVIKVSYRH�WIVZMGI�

Call startForeground() in the onCreate() method and pass some unique id
(Integer) and the makeNotification() method we just created.

Written by Marko Katziv and Eran Katsav ©

Run the app again and start the service. While the speech plays, kill the app.
&IGEYWI�[I�QSZIH�XLI�WIVZMGI�XS�XLI�JSVIKVSYRH��MX�[SRƅX�HMI�ERH�OIIT�TPE]MRK�XLI�
speech.

Foreground service from the background

Apps that target Android 8.0 and above cannot start a foreground service from the
background. if an app tries to start a foreground service while the app is in the
background, we will get a ForegroundServiceStartedNotAllowedException.

Try it for yourself. Disable the code inside the AlarmManager.kt onReceive()
method, and add the following line:

Run the app, enter the AlarmFragment and hit the button. Kill the app and after a
few seconds, you will get the ForegroundServiceStartedNotAlloedException:

special cases

there are cases where the app can start a foreground service even while the app
is running in the background. For example:

https://developer.android.com/reference/android/app/ForegroundServiceStartNotAllowedException

Written by Marko Katziv and Eran Katsav ©

x The app receives a high- priority message from the Firebase Cloud
Messaging service (not covered in this document).

x The app triggers an exact alarm to complete an action that the user
requested.

x The app receives a Bluetooth broadcast.

For a full list, visit:

https://developer.android.com/guide/components/foreground-
services#background-start-restriction-exemptions

To overcome this background execution limitation, we need to call the
startForegroundService() method. This method is allowed to be called even
while the app is in the background.
Note: XLI� ETT�QYWX� GEPP� XLI� WIVZMGIƅW� startForeground() method within five
seconds after the service is created!

0IXƅW� KS�FEGO� XS� XLI�AlarmManagerReceiver.kt class, and add the necessary
code to properly start a foreground service from the background.

First, disable every line of code in the onReceive() method, then add the following
lines:

2S[��0IXƅW�KIX�FEGO�XS�SYV�WIVZMGI�GPEWW��&IGEYWI�[I�EVI�RSX�KSMRK�XS�WXST�XLI�
foreground service ourselves through the fragment, We should provide a way for
the users to do it by themselves in case they want to. -XƅW�RSX�EP[E]W needed, but
MXƅW�KSSH�XS�LEZI�XLMW�STXMSR�[LIR�XLI�WIVZMGI�MWRƅX�HSMRK�WSQIXLMRK�GVMXMGEP��

Add the following constants to the companion object in the service class:

Add the following createCloseAction() method:

https://developer.android.com/guide/components/foreground-services#background-start-restriction-exemptions
https://developer.android.com/guide/components/foreground-services#background-start-restriction-exemptions

Written by Marko Katziv and Eran Katsav ©

This method returns a NotificationCompat.Action object.

Put this object inside the makeNotification() method as followed:

By adding this action to the notification, we create an exit button in the notification,
and the users may now stop the foreground service by their own.

Written by Marko Katziv and Eran Katsav ©

Now we need to handle the action in the service class:

Run the app and start the service, our notification now has an exit button. click on
the button and the service should be destroyed with toast message saying the
service was destroyed.

Summary

x A service runs by default on the main thread.
x Must inherit from the Service class
x Communicate back and fourth through intents or by binding.
x Apps that target Android 9.0 and higher must have the

FOREGROUND_SERVICE permission.
x Must declare the service in the manifest.
x Must provide a notification when setting a service to run in foreground.
x Must use the startForegroundService() if starting a foreground service from

the background.
x Binding with the service will not call the onStartCommand() method.
x Each broadcast to the service will go through the onStartCommand()

method. From there we can get the data from the intent.
x Consider working with the WorkManager API for cleaner, and better control

over background work.

