
●

●

●

●

Coroutines Kotlin

Download the Full App created in this Guide:
https://drive.google.com/file/d/1PDhzzYXb4lRXYNuniU2YMpQflv07JAKZ/
view?usp=sharing

Download the Architecture Project with Coroutines support
https://drive.google.com/file/d/1azpucisy6VxHNAPIVg2EecD_MqAxn4L7/
view?usp=sharing

Coroutines is Google’s recommended solution for asynchronous
programming on Android.

Coroutines are:
Lightweight: You can run many coroutines on a single thread due to
support for suspension, which doesn't block the thread where the
coroutine is running. Suspending saves memory over blocking while
supporting many concurrent operations.
Fewer memory leaks: Use structured concurrency to run operations
within a scope.
Built-in cancellation support: Cancellation is propagated
automatically through the running coroutine hierarchy.
Jetpack integration: Many Jetpack libraries include extensions that
provide full coroutines support. Some libraries also provide their own
coroutine scope that you can use for structured concurrency.

Co - cooperate
Routines - functions

Timing functions

One can think of a coroutine as a light-weight thread. Like threads, coroutines
can run in parallel, wait for each other and communicate. The biggest
difference is that coroutines are very cheap, almost free: we can create
thousands of them, and pay very little in terms of performance. True threads,
on the other hand, are expensive to start and keep around. A thousand threads
can be a serious challenge for a modern machine.

Suspended functions are at the center of everything in coroutines. A
suspended function is simply a function that can be paused and resumed at a
later time. They can execute a long running operation and wait for it to
complete without blocking. You can even stop or suspend your function while
you are waiting for a callback and continue it when you get the result.
This is why You can run many coroutines on a single thread. Suspension
doesn't block the thread where the coroutine is running. We save allot of

memory by not blocking the thread.

The exact definition of Coroutines: A framework to manage concurrency in a
more performant and simple way with its lightweight thread which is written on
top of the actual threading framework to get the most out of it by taking the
advantage of cooperative nature of functions.

ViewModel, LiveData and LifeCycle includes a set of KTX extensions that work
directly with coroutines. We will see later on.

First you need to import the latest Kotlin coroutines to your android studio
project. You can find the latest version here. Follow the Gradle instructions. Add
both the core and the android libraries :

https://github.com/Kotlin/kotlinx.coroutines

implementation 'org.jetbrains.kotlinx:kotlinx-coroutines-android:1.6.0'
implementation 'org.jetbrains.kotlinx:kotlinx-coroutines-core:1.6.0'

Then create the following activity that suppose to fetch a user from the
database (fetching illustrated here by sleep - sometimes working and sleeping
is exactly the same:)) and updating it’s details in Text View(make sure your
default activity_main.xml file has a Text View whose id is text_view and use
view binding.

If we execute it like this it would result in a very poor user experience - a stuck
app for 3 secs!

We have to define a Coroutine scope.

Coroutine scope promotes structured concurrency, whereby you can launch
multiple coroutines in the same scope and cancel the scope (which in turn
cancels all the coroutines within that scope).

if we are not already in a coroutine scope we can use the GlobalScope which
the the scope of all the app. As along as the app is alive all our coroutines can
run in this scope(there are more scopes and working with this scope is not
recommended)
A global CoroutineScope not bound to any job. Global scope is used to launch
top-level coroutines which are operating on the whole application lifetime and

●

●

●

●

are not cancelled prematurely.

Active coroutines launched in GlobalScope do not keep the process alive. They
are like daemon threads.
This is a delicate API. It is easy to accidentally create resource or memory leaks
when GlobalScope is used. A coroutine launched in GlobalScope is not subject
to the principle of structured concurrency, so if it hangs or gets delayed due to
a problem (e.g. due to a slow network), it will stay working and consuming
resources until the app finishes.

From the GlobalScope we can call launch() that can execute our coroutines and
return a job object that can be started if the coroutine start is lazy (by default
all coroutines created with this function are executed immediately) or cancelled
later on, or async() which is almost the same except it returns a Deferred
object containing the Coroutine result. The coroutine created with this function
is cancelled if the deferred object is cancelled.

Both function need a CoroutuineContext. The coroutine Context has a default
value.
The coroutine context includes a coroutine dispatcher that determines
what thread or threads the corresponding coroutine uses for its execution.
The coroutine dispatcher can confine coroutine execution to a specific thread,
dispatch it to a thread pool, or let it run unconfined.

CoroutineDispatcher tells the coroutine builder (in our case launch{} or
async{}) as to which pool of threads is to be used. There are a few predefined
Dispatchers available.

Dispatchers.Default: CPU-intensive work, such as sorting large lists,
doing complex calculations and similar. A shared pool of threads on
the JVM backs it.
Dispatchers.IO: networking or reading and writing from files. In short
– any input and output, as the name states
Dispatchers.Main: mandatory dispatcher for performing UI-related
events in Android's main or UI thread.
Dispatchers.Unconfined - A coroutine dispatcher that is not confined
to any specific thread. The unconfined dispatcher is appropriate for
coroutines which neither consume CPU time nor update any shared
data (like UI) confined to a specific thread. From the Kotlin docs: The
unconfined dispatcher is an advanced mechanism that can be helpful
in certain corner cases where dispatching of a coroutine for its
execution later is not needed or produces undesirable side-effects,
because some operation in a coroutine must be performed right away.
The unconfined dispatcher should not be used in general code.

When launch {} is used without parameters, it inherits the context (and thus
dispatcher) from the CoroutineScope it is being launched from. In this case of

the Global Scope its default context is the the Dispatcher.Default. We can
specify Any other Context we want to the GloablScope and run the launch or
async result on the Dispatcher.IO like that:

GlobalScope.launch(Dispatchers.IO) {}

Try commenting out the existing code and run the following (watch the output):

GlobalScope.launch {
 println("Default : I'm working in thread ${Thread.currentThread().name}")
}
GlobalScope.launch(Dispatchers.IO) {
 println("IO : I'm working in thread ${Thread.currentThread().name}")
}
GlobalScope.launch(Dispatchers.Main) {
 println("Main : I'm working in thread $
{Thread.currentThread().name}")
}
GlobalScope.launch(newSingleThreadContext("MyOwnThread")) { // will get its
own new thread
 println("newSingleThreadContext: I'm working in thread $
{Thread.currentThread().name}")
}

So to shorten our definitions: Each coroutine is a Job, a job must run in a scope
for efficient memory management and must receive a Context which include
the Dispatcher - which threads the coroutine will run on.

First step:

This will cause the app to crash when updating ui from the background!

If we call async we get Deferred value that can be extract using await() - this
is very similar to Future in Java
Please note the await() is a suspended function (it make sense cause it can’t
run before the function that it is working on will finish) that can only be called
from another suspended function or a Coroutine context.

Second step:

Another option instead of turning the fetch function to suspended is to call
await() in the fetchAndShowUser

Instead of calling from the GlobalScope and await for the result we can use the
function withContext that creates a suspended function that runs in the given
(or from the scope) Context.

Complete definition: Calls the specified suspending block with a given
coroutine context, suspends until it completes, and returns the result.
Before the KTX this is what we used.

suspend fun <T> withContext(context: CoroutineContext, block: suspend
CoroutineScope.() -> T): T

withContext like await() it is also a suspended function (it make sense since it
must suspend the coroutine until the work is finished) so the fetchUser must
also be suspended.
Let’s see what are the consequences of using withContext:

Add another Text View to your xml file and change both ids to text_view_one
and text_view_two

For example this code will take 6 secs - First the first user is fetched and only
then does the fetching of the second user starts (you can change the
Thread.sleep() to the suspended function delay())

Which is exactly the same as this:

Our fetch and show user waits for each user to be fetched and they are fetched
one after the other and not simultaneously.
But if we change our code to the following all fetching work will at the same
time:

And this is an advantage async has, we can’t achieve with witchContext!

Coroutines are not a new concept, let alone invented by Kotlin. They've been
around for decades and are popular in some other programming languages
such as Go. What is important to note though is that the way they're
implemented in Kotlin, most of the functionality is delegated to libraries. In fact,
beyond the suspend keyword, no other keywords are added to the language.
This is somewhat different from languages such as C# that have async and
await as part of the syntax. With Kotlin, these are just library functions.

A big improvement to the above code is taking advantage of the fact that the
Activity itself can serve as the Coroutine Context for creating new Coroutines!

Our activity needs to implement the CoroutineScope interface and override the
get method that returns the Coroutine context needed for calling the launch
and async functions the can run our Coroutines. This way we don’t needed to
call launch or async on the global scope. We also doesn’t need to specify the
Coroutine Context and the Dispatchers since the get() method return the
Context

And thus our code can be altered to this:

Again, when no Dispatchers is given to the launch or async coroutines it
runs on the general context they are in.
So we don’t have to specify to launch which scope and on which dispatcher to
run in since it gets them from the activity.

Again one can think that all the coroutines launched from that scope will be
auto cancelled when the activity is destroyed. But this is not the case. Just add
this to the on create function. This code will create a coroutine that unless
cancelled will last for a very long time. We will close our activity and see if the
exception is thrown when the activity is destroyed and whether the coroutines
ends with it:

We kill the activity and the exception is not thrown! No one killed the coroutine
when onDestroyed got called.

This can be done by bounding the scope to a specific Job. First lets understand
what is a Job:

Job
A coroutine itself is represented by a Job. A Job is a handle to a coroutine. For
every coroutine that you create (by launch or async - deferred is also a job -
you can cancel it), it returns a Job instance that uniquely identifies the
coroutine and manages its lifecycle. You can also pass a Job to a
CoroutineScope to keep a handle on its lifecycle.
The coroutine scope is determined by an empty Job it create for himself if you
won’t pass any and using the + operator he add this job to his internal hash
map and detains the scope lifecycle by it.

So we will create an empty job in the concrete and cancel is on the OnDestroy
and add it to the get function like this:

No test your code again. Kill the activity. Is the exception thrown? Oh, ya…

We can create a lazy task that can be saved for later execution and will only be
executed when needed, when we call start on the job returned.
This job will wait for the start function in oppose to regular launch call with
default CoroutineStart parameter of DEFAULT and it start immediately

Another Coroutines useful suspended functions is:
joinAll() - that waits for all coroutines to return
Job.join() - called on specific Coroutine we want to wait for it to finish
repeat() - for repeated actions

delay(mills) which is much better than Thread.sleep because the later blocks

●

●

●

the whole thread while the former stops only the specific Coroutine and the
others running on the same thread are not stopped.

Now we will see there is much more elegant solution for bounding our
coroutines to the activity lifecycle that comes with the KTX-Extenssions kit.

More on Coroutines Scope
To avoid work leaks you should organize your coroutines by adding them to a
CoroutineScope, which is an object that keeps track of coroutines.
CoroutineScopes can be cancelled; and when you cancel a scope, they cancel
all the associated coroutines. Above I’m using the GlobalScope, which is, as the
name implies, a CoroutineScope that is available globally. It’s generally not
good practice to use the GlobalScope for the same reasons it’s generally not
good to write globally accessible variables. So you’ll need to either make a
scope, or get access to one.
In Activity or Fragment you can use the lifeCycleScope
In ViewModels, this is easy if you use viewModelScope.
And in LiveData you can use the liveDataScope

Add the following implementations (if needed) in your app Gradle file:
For ViewModelScope, use androidx.lifecycle:lifecycle-viewmodel-
ktx:2.4.1 or higher.
For LifecycleScope, use androidx.lifecycle:lifecycle-runtime-ktx:2.4.1
or higher.
For liveData, use androidx.lifecycle:lifecycle-livedata-ktx:2.4.1 or
higher.

LifecycleScope
A LifecycleScope is defined for each Lifecycle object. Any coroutine launched
in this scope is canceled when the Lifecycle is destroyed. You can access the
CoroutineScope of the Lifecycle either via lifecycle.coroutineScope or
lifecycleOwner.lifecycleScope properties. It is important to understand that the
default Dispatchers of the lifeCycleScope is the Dispatchers.Main meaning the
main thread of the application.

In an activity or fragment se the lifeCycleScope like this:

Even though the CoroutineScope provides a proper way to cancel long-running
operations automatically, you might have other cases where you want to
suspend execution of a code block unless the Lifecycle is in a certain state. For
example, to run a FragmentTransaction, you must wait until the Lifecycle is at
least STARTED. For these cases, Lifecycle provides additional methods:
lifecycle.whenCreated, lifecycle.whenStarted, and lifecycle.whenResumed. Any
coroutine run inside these blocks is suspended if the Lifecycle isn't at least in
the minimal desired state.

And our revised code will look life this (check it, kill your activity and see the
exception is thrown):

viewModelScope
Often if your ViewModel is destroyed, there’s a bunch of “work” associated with
the ViewModel that should be stopped as well. For example, let’s say you’re
preparing a bitmap to show on-screen. That’s an example of work you should
do without blocking the main thread and work that should be stopped if you
permanently navigate away from or close the screen. For work like this, you
should use viewModelScope.

viewModelScope is a Kotlin extension property on the ViewModel class. It is a
CoroutineScope that is cancelled once the ViewModel is destroyed (when
onCleared() is called). Thus when you’re using a ViewModel, you can start all of
your coroutines using this scope.

For ViewModelScope, use androidx.lifecycle:lifecycle-viewmodel-ktx:2.3.1

Here is an example:

Just think that the above code save all the code below:

More on Coroutines And View Model
https://medium.com/androiddevelopers/easy-coroutines-in-android-
viewmodelscope-25bffb605471
(Also available testing coroutines with mockito)
https://medium.com/androiddevelopers/viewmodels-with-saved-state-jetpack-
navigation-data-binding-and-coroutines-df476b78144e

LiveData Scope special use cases of coroutines and Live Data
When using LiveData, you might need to calculate values asynchronously. For
example, you might want to retrieve a user's preferences and serve them to
your UI. In these cases, you can use the liveData builder function to call a
suspend function, serving the result as a LiveData object.

The code block starts executing when LiveData becomes active and is
automatically canceled after a configurable timeout when the LiveData
becomes inactive. If it is canceled before completion, it is restarted if the
LiveData becomes active again. If it completed successfully in a previous run, it
doesn't restart.

You can also emit multiple values from the block. Each emit() call suspends
the execution of the block until the LiveData value is set on the main
thread.

You can emit multiple values from a LiveData by calling the emitSource()
function whenever you want to emit a new value. Note that each call to emit()
or emitSource() removes the previously-added source.

This means that you can use emit whenever you want to set a value once, but if
you want to connect your live data to another live data value you use emit
source.

suspendCoroutine
Obtains the current continuation instance inside suspend functions and
suspends the currently running coroutine.
This is usually done to prevent nesting of callbacks and use a single suspended
function instead

When we use this code we can simply call awaitTask function and get the info
result without any callback hassle from our side.
The block of code passed to suspendCoroutine { ... } should not block a thread
that it is being invoked on, allowing the coroutine to be suspended. This way,
the actual thread can be used for other tasks. This is a key feature that allows
Kotlin coroutines to scale and to run multiple coroutines even on the single UI
thread.

